Abstract

The tiling problem is the decision problem to determine if a given finite collection of Wang tiles admits a valid tiling of the plane. In this work we give a new proof of this fact based on tiling simulations of certain piecewise affine transformations. Similar proof is also shown to work in the hyperbolic plane, thus answering an open problem posed by R.M.Robinson 1971 [9].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berger, R.: Undecidability of the Domino Problem. Memoirs of the American Mathematical Society 66, 72 (1966)MathSciNetGoogle Scholar
  2. 2.
    Blondel, V., Bournez, O., Koiran, P., Papadimitriou, C., Tsitsiklis, J.: Deciding stability and mortality of piecewise affine dynamical systems. Theoretical Computer Science 255, 687–696 (2001)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Goodman-Strauss, C.: A strongly aperiodic set of tiles in the hyperbolic plane. Inventiones Mathematicae 159, 119–132 (2005)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hooper, P.K.: The undecidability of the Turing machine immortality problem. The Journal of Symbolic Logic 31, 219–234 (1966)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kari, J.: The Tiling Problem Revisited (extended abstract). In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 72–79. Springer, Heidelberg (2007)Google Scholar
  6. 6.
    Kari, J.: A small aperiodic set of Wang tiles. Discrete Mathematics 160, 259–264 (1996)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Koiran, P., Cosnard, M., Garzon, M.: Computability with low-dimensional dynamical systems. Theoretical Computer Science 132, 113–128 (1994)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Margenstern, M.: About the domino problem in the hyperbolic plane, a new solution. Manuscript, 109 (2007) (and also see arXiv:cs/0701096, same title), http://www.lita.univ-metz.fr/~margens/
  9. 9.
    Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Inventiones Mathematicae 12, 177–209 (1971)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Robinson, R.M.: Undecidable tiling problems in the hyperbolic plane. Inventiones Mathematicae 44, 259–264 (1978)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jarkko Kari
    • 1
  1. 1.Department of MathematicsUniversity of TurkuFinland

Personalised recommendations