Mortality Problem for 2×2 Integer Matrices

  • C. Nuccio
  • E. Rodaro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4910)


A given set F of n×n matrices is said to be mortal if the n×n null matrix belongs to the free semigroup generated by F. It is known that the mortality problem for 3×3 matrices with integer entries is undecidable [7],[3]. In this paper we prove that the mortality problem is decidable for any set of 2×2 integer matrices whose determinants assume the values 0,±1.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bournez, O., Branicky, M.: On the mortality problem for matrices of low dimensions. TCS 35(4), 433–488 (2002)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Choffrut, C., Karhumäki, J.: Some decision problems on integer matrices. RAIRO/ITA 39(1), 125–132 (2005)zbMATHGoogle Scholar
  3. 3.
    Halava, V., Harju, T.: Mortality in matrix semigroups. Amer. Math. Monthly 108(7), 649–653 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Krom, M., Krom, M.: Recursive solvability of problems with matrices. zwitschr. f. math. Logik und Grundlagen d. Math. 35, 437–442 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Krom, M., Krom, M.: More on mortality. Amer. Math. Monthly 97, 37–38 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Lisitsa, A., Potapov, I.: Membership and reachibility problems for row-monomial transformations. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 623–634. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Paterson, M.S.: Unsolvability in 3×3 matrices. Stud. Appl. Math. 49, 105–107 (1970)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • C. Nuccio
    • 1
  • E. Rodaro
    • 1
  1. 1.Dipartimento di Matematica, Politecnico di MilanoMilanoItaly

Personalised recommendations