Certification of Proving Termination of Term Rewriting by Matrix Interpretations

  • Adam Koprowski
  • Hans Zantema
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4910)


We develop a Coq formalization of the matrix interpretation method, which is a recently developed, powerful approach to proving termination of term rewriting. Our formalization is a contribution to the CoLoR project and allows to automatically certify matrix interpretation proofs produced by tools for proving termination. Thanks to this development the combination of CoLoR and our tool, TPA, was the winner in 2007 in the new certified category of the annual Termination Competition.


Theorem Prover Termination Proof Termination Tool Dependency Pair Termination Competition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Coq proof assistant,
  2. 2.
    The RTA list of open problems,
  3. 3.
  4. 4.
    Termination problems data base,
  5. 5.
    Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236(1-2), 133–178 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Blanqui, F., Delobel, W., Coupet-Grimal, S., Hinderer, S., Koprowski, A.: CoLoR, a Coq library on rewriting and termination. In: 8th WST (2006)Google Scholar
  7. 7.
    Contejean, É., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Certification of automated termination proofs. In: Konev, B., Wolter, F. (eds.) FroCoS 2007. LNCS(LNAI), vol. 4720, pp. 148–162. Springer, Heidelberg (to appear, 2007)Google Scholar
  8. 8.
    Contejean, E., Marché, C., Monate, B., Urbain, X.: The CiME rewrite tool,
  9. 9.
    Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 574–588. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. Journal of Automated Reasoning (accepted, 2007)Google Scholar
  11. 11.
    Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: Combining techniques for automated termination proofs. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: Techniques and features. Information and Computation 205(4), 474–511 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Koprowski, A.: TPA: Termination proved automatically. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 257–266. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Koprowski, A., Zantema, H.: Certification of matrix interpretations in Coq. In: 9th WST (2007)Google Scholar
  15. 15.
    Koprowski, A., Zantema, H.: Certification of proving termination of term rewriting by matrix interpretations. Technical Report CS-Report 07/22, Eindhoven University of Technology (August 2007),
  16. 16.
    Krauss, A.: Certified size-change termination. In: CADE 2007. LNCS (LNAI), vol. 4603, pp. 460–475. Springer, Heidelberg (2007)Google Scholar
  17. 17.
    Magaud, N.: Ring properties for square matrices. Coq contributions,
  18. 18.
    Marché, C., Zantema, H.: The Termination Competition 2007. In: RTA 2007. LNCS, vol. 4533, pp. 303–313. Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Adam Koprowski
    • 1
  • Hans Zantema
    • 1
  1. 1.Department of Computer ScienceEindhoven University of TechnologyThe Netherlands

Personalised recommendations