Characterization of Unlabeled Level Planar Graphs

  • J. Joseph Fowler
  • Stephen G. Kobourov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4875)

Abstract

We present the set of planar graphs that always have a simultaneous geometric embedding with a strictly monotone path on the same set of n vertices, for any of the n! possible mappings. These graphs are equivalent to the set of unlabeled level planar (ULP) graphs that are level planar over all possible labelings. Our contributions are twofold. First, we provide linear time drawing algorithms for ULP graphs. Second, we provide a complete characterization of ULP graphs by showing that any other graph must contain a subgraph homeomorphic to one of seven forbidden graphs.

References

  1. 1.
    Brandes, U., Erten, C., Fowler, J.J., Frati, F., Geyer, M., Gutwenger, C., Hong, S., Kaufmann, M., Kobourov, S.G., Liotta, G., Mutzel, P., Symvonis, A.: Colored simultaneous geometric embeddings. In: COCOON 2007. LNCS, vol. 4598, pp. 254–263. Springer, Heidelberg (2007)Google Scholar
  2. 2.
    Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous graph embedding. Computational Geometry: Theory and Applications 36(2), 117–130 (2007)MATHMathSciNetGoogle Scholar
  3. 3.
    Di Battista, G., Nardelli, E.: Hierarchies and planarity theory. IEEE Transactions on Systems, Man, and Cybernetics 18(6), 1035–1046 (1988)MATHCrossRefGoogle Scholar
  4. 4.
    Eades, P., Feng, Q., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for hierarchical graphs and clustered graphs. Algorithmica 44(1), 1–32 (2006)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: Characterization of unlabeled level planar trees. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 367–369. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Fowler, J.J., Kobourov, S.G.: Characterization of unlabeled planar graphs. Technical Report TR06-04, University of Arizona (2006), ftp://ftp.cs.arizona.edu/reports/2006/TR06-04.pdf
  7. 7.
    Geyer, M., Kaufmann, M., Vrto, I.: Two trees which are self-intersecting when drawn simultaneously. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 201–210. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Healy, P., Kuusik, A., Leipert, S.: A characterization of level planar graphs. Discrete Math. 280(1-3), 51–63 (2004)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Jünger, M., Leipert, S.: Level planar embedding in linear time. J. Graph Algorithms Appl. 6(1), 67–113 (2002)MATHMathSciNetGoogle Scholar
  10. 10.
    Jünger, M., Leipert, S., Mutzel, P.: Level planarity testing in linear time. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 224–237. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Kuratowski, C.: Sur les problèmes des courbes gauches en Topologie. Fundamenta Mathematicae 15, 271–283 (1930)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • J. Joseph Fowler
    • 1
  • Stephen G. Kobourov
    • 1
  1. 1.Department of Computer ScienceUniversity of Arizona 

Personalised recommendations