A Bipartite Strengthening of the Crossing Lemma

  • Jacob Fox
  • János Pach
  • Csaba D. Tóth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4875)


The celebrated Crossing Lemma states that, in every drawing of a graph with n vertices and m ≥ 4n edges there are at least Ω(m 3/n 2) pairs of crossing edges; or equivalently, there is an edge that crosses Ω(m 2/n 2) other edges. We strengthen the Crossing Lemma for drawings in which any two edges cross in at most O(1) points.

We prove for every \(k\in {\mathbb N}\) that every graph G with n vertices and m ≥ 3n edges drawn in the plane such that any two edges intersect in at most k points has two disjoint subsets of edges, E 1 and E 2, each of size at least \(c_km^2/n^2\), such that every edge in E 1 crosses all edges in E 2, where c k  > 0 only depends on k. This bound is best possible up to the constant c k for every \(k\in {\mathbb N}\). We also prove that every graph G with n vertices and m ≥ 3n edges drawn in the plane with x-monotone edges has disjoint subsets of edges, E 1 and E 2, each of size Ω(m 2/ (n 2 polylog n)), such that every edge in E 1 crosses all edges in E 2. On the other hand, we construct x-monotone drawings of bipartite dense graphs where the largest such subsets E 1 and E 2 have size O(m 2/(n 2 log(m/n))).




  1. [ACNS82]
    Ajtai, M., Chvátal, V., Newborn, M., Szemerédi, E.: Crossing-free subgraphs. In: Theory and Practice of Combinatorics. Mathematical Studies, vol. 60, pp. 9–12. North-Holland, Amsterdam (1982)Google Scholar
  2. [D98]
    Dey, T.K.: Improved bounds for planar k-sets and related problems. Discrete Comput. Geom. 19, 373–382 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. [ENR00]
    Elekes, G., Nathanson, M.B., Ruzsa, I.Z.: Convexity and sumsets. J. Number Theory 83, 194–201 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. [E46]
    Erdős, P.: On sets of distances of n points, Amer. Math. Monthly 53, 248–250 (1946)CrossRefMathSciNetGoogle Scholar
  5. [F06]
    Fox, J.: A bipartite analogue of Dilworth’s theorem, Order 23, 197–209 (2006)MATHCrossRefMathSciNetGoogle Scholar
  6. [FPT07a]
    Fox, J., Pach, J., Tóth, C.D.: Intersection patterns of curves, manuscript, Cf (2007), http://math.nyu.edu/~pach/publications/justcurves050907.pdf
  7. [FPT07b]
    Fox, J., Pach, J., Tóth, C.D.: Turán-type results for partial orders and intersection graphs of convex sets, Israel J. Math. (to appear, 2007)Google Scholar
  8. [GRU83]
    Golumbic, M.C., Rotem, D., Urrutia, J.: Comparability graphs and intersection graphs. Discrete Math. 43, 37–46 (1983)MATHCrossRefMathSciNetGoogle Scholar
  9. [GM90]
    Gazit, H., Miller, G.L.: Planar separators and the Euclidean norm. In: Asano, T., Imai, H., Ibaraki, T., Nishizeki, T. (eds.) SIGAL 1990. LNCS, vol. 450, pp. 338–347. Springer, Heidelberg (1990)Google Scholar
  10. [KT04]
    Katz, N.H., Tardos, G.: A new entropy inequality for the Erdős distance problem. In: Towards a theory of geometric graphs. Contemp. Math. AMS, vol. 342, pp. 119–126 (2004)Google Scholar
  11. [KM04]
    Kolman, P., Matoušek, J.: Crossing number, pair-crossing number, and expansion. J. Combin. Theory Ser. B 92, 99–113 (2004)MATHCrossRefMathSciNetGoogle Scholar
  12. [L84]
    Leighton, T.: New lower bound techniques for VLSI. Math. Systems Theory 17, 47–70 (1984)MATHCrossRefMathSciNetGoogle Scholar
  13. [LT79]
    Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36, 177–189 (1979)MATHCrossRefMathSciNetGoogle Scholar
  14. [LPS88]
    Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8, 261–277 (1988)MATHCrossRefMathSciNetGoogle Scholar
  15. [PRTT06]
    Pach, J., Radoičić, R., Tardos, G., Tóth, G.: Improving the Crossing Lemma by finding more crossings in sparse graphs. Discrete Comput. Geom. 36, 527–552 (2006)MATHCrossRefMathSciNetGoogle Scholar
  16. [PSS96]
    Pach, J., Shahrokhi, F., Szegedy, M.: Applications of the crossing number. Algorithmica 16, 111–117 (1996)MATHMathSciNetCrossRefGoogle Scholar
  17. [PS98]
    Pach, J., Sharir, M.: On the number of incidences between points and curves. Combin. Probab. Comput. 7(1), 121–127 (1998)MATHCrossRefMathSciNetGoogle Scholar
  18. [PS01]
    Pach, J., Solymosi, J.: Crossing patterns of segments. J. Combin. Theory Ser. A 96, 316–325 (2001)MATHCrossRefMathSciNetGoogle Scholar
  19. [PST00]
    Pach, J., Spencer, J., Tóth, G.: New bounds on crossing numbers. Discrete Comput. Geom. 24(4), 623–644 (2000)MATHMathSciNetGoogle Scholar
  20. [PT00]
    Pach, J., Tóth, G.: Which crossing number is it anyway? J. Combin. Theory Ser. B 80, 225–246 (2000)MATHCrossRefMathSciNetGoogle Scholar
  21. [PT02]
    Pach, J., Tardos, G.: Isosceles triangles determined by a planar point set. Graphs Combin. 18, 769–779 (2002)MATHCrossRefMathSciNetGoogle Scholar
  22. [PT06]
    Pach, J., Tóth, G.: Comment on Fox News. Geombinatorics 15, 150–154 (2006)MATHMathSciNetGoogle Scholar
  23. [ST01]
    Solymosi, J., Tóth, C.D.: Distinct distances in the plane. Discrete Comput. Geom. 25, 629–634 (2001)MATHMathSciNetGoogle Scholar
  24. [STT02]
    Solymosi, J., Tardos, G., Tóth, C.D.: The k most frequent distances in the plane. Discrete Comput. Geom. 28, 639–648 (2002)MATHMathSciNetGoogle Scholar
  25. [S97]
    Székely, L.A.: Crossing numbers and hard Erdős problems in discrete geometry. Combin. Probab. Comput. 6, 353–358 (1997)MATHCrossRefMathSciNetGoogle Scholar
  26. [ST83]
    Szemerédi, E., Trotter, W.T.: Extremal problems in discrete geometry. Combinatorica 3, 381–392 (1983)MATHCrossRefMathSciNetGoogle Scholar
  27. [TV06]
    Tao, T., Vu, V.: Additive combinatorics. Cambridge Studies in Advanced Mathematics, 105. Cambridge University Press, Cambridge (2006)MATHGoogle Scholar
  28. [V05]
    Valtr, P.: On the pair-crossing number. In: Combinatorial and computational geometry, vol. 52, pp. 569–575. MSRI Publications, Cambridge Univ. Press (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jacob Fox
    • 1
  • János Pach
    • 2
  • Csaba D. Tóth
    • 3
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA
  2. 2.City CollegeCUNY and Courant InstituteNYU, New York, NYUSA
  3. 3.University of CalgaryCalgaryCanada

Personalised recommendations