Drawing Graphs with GLEE

  • Lev Nachmanson
  • George Robertson
  • Bongshin Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4875)


This paper describes novel methods we developed to lay out graphs using Sugiyama’s scheme [16] in a tool named GLEE. The main contributions are: a heuristic for creating a graph layout with a given aspect ratio, an efficient method of edge-crossings counting while performing adjacent vertex swaps, and a simple and fast spline routing algorithm.


  1. 1.
    Drawing graphs with GLEE technical report, Lev Nachmanson, George Robertson and Bongshin Lee, ftp://ftp.research.microsoft.com/pub/tr/TR-2007-72.pdf
  2. 2.
    Graphviz todo list (December 22, 2005), http://www.graphviz.org/doc/todo.html
  3. 3.
    Abello, J., Gansner, E.R.: Short and smooth polygonal paths. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 151–162. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Barth, W., Jünger, M., Mutzel, P.: Simple and efficient bilayer cross counting. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 130–141. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Brandes, U., Köpf, B.: Fast and simple horizontal coordinate assignment. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 31–44. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Coffman, E.G., Graham, R.L.: Optimal Scheduling for Two-Processor Systems. Acta Informatica 1(3), 200–213 (1972)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Dobkin, D.P., Gansner, E.R., Koutsofios, E., North, S.: Implementing a general-purpose edge router. In: Di Battista, G. (ed.) Graph Drawing, Rome, Italy, September 18-20, 1997, pp. 262–271. Springer, Heidelberg (1998)Google Scholar
  8. 8.
    Eiglsperger, M., Siebenhaller, M., Kaufmann, M.: An efficient implementation of sugiyama’s algorithm for layered graph drawing. In: Pach, J. (ed.) Graph Drawing, New York, pp. 155–166. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.-P.: A Technique for Drawing Directed Graphs. IEEE Transactions on Software Engineering 19(3), 214–230 (1993)CrossRefGoogle Scholar
  10. 10.
    Goodrich, M.T., Kobourov, S.G. (eds.): GD 2002. LNCS, vol. 2528. Springer, Heidelberg (2002)MATHGoogle Scholar
  11. 11.
    Healy, P., Nikolov, N.S.: A branch-and-cut approach to the directed acyclic graph layering problem. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 98–109. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Lutterkort, D., Peters, J.: Smooth paths in a polygonal channel. In: Symposium on Computational Geometry, pp. 316–321 (1999)Google Scholar
  13. 13.
    Myles, A., Peters, J.: Threading splines through 3d channels. Computer-Aided Design 37(2), 139–148 (2005)CrossRefGoogle Scholar
  14. 14.
    Nikolov, N.S., Tarassov, A.: Graph layering by promotion of nodes. Discrete Applied Mathematics 154(5), 848–860 (2006)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Nikolov, N.S., Tarassov, A., Branke, J.: In search for efficient heuristics for minimum-width graph layering with consideration of dummy nodes. J. Exp. Algorithmics 10(2.7) (2005)Google Scholar
  16. 16.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Transactions on Systems, Man and Cybernetics SMC-11(2), 109–125 (1981)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Lev Nachmanson
    • 1
  • George Robertson
    • 1
  • Bongshin Lee
    • 1
  1. 1.Microsoft ResearchRedmondUSA

Personalised recommendations