Treemaps for Directed Acyclic Graphs

  • Vassilis Tsiaras
  • Sofia Triantafilou
  • Ioannis G. Tollis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4875)

Abstract

Gene Ontology information related to the biological role of genes is organized in a hierarchical manner that can be represented by a directed acyclic graph (DAG). Treemaps graphically represent hierarchical information via a two-dimensional rectangular map. They efficiently display large trees in limited screen space. Treemaps have been used to visualize the Gene Ontology by first transforming the DAG into a tree. However this transformation has several undesirable effects such as producing trees with a large number of nodes and scattering the rectangles associated with the duplicates of a node around the screen. In this paper we introduce the problem of visualizing a DAG as a treemap, we present two special cases, and we discuss complexity results.

Keywords

Treemap Directed Acyclic Graph (DAG) Visualization Gene Ontology 

References

  1. 1.
    Baehrecke, E., Dang, N., Babaria, K., Shneiderman, B.: Visualization and analysis of microarray and gene ontology data with treemaps. BMC Bioinformatics 5(84) (2004)Google Scholar
  2. 2.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of graphs. Prentice - Hall, New Jersey, U.S.A. (1998)Google Scholar
  3. 3.
    Bederson, B., Shneiderman, B., Wattenberg, M.: Ordered and quantum treemaps: Making effective use of 2D space to display hierarchies. ACM Transactions on Graphics 21(4), 833 (2002)CrossRefGoogle Scholar
  4. 4.
    Booth, S., Lueker, S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences 13, 335 (1976)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bruls, M., Huizing, K., van Wijk, J.J.: Squarified treemaps. In: Proceedings of Joint Eurographics and IEEE TCVG Symposium on Visualization, p. 33. Springer, Heidelberg (2000)Google Scholar
  6. 6.
    Garey, M., Johnson, D.: Complexity results for multiprocessor scheduling under resource constraints. SIAM Journal on Computing 4(4), 397 (1975)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Holten, D.: Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data. IEEE Transactions on Visualization and Computer Graphics 12(5), 741 (2006)CrossRefGoogle Scholar
  8. 8.
    Hsu, W.-L.: PC-Trees vs. PQ-Trees. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, p. 207. Springer, Heidelberg (2001)Google Scholar
  9. 9.
    Meidanis, J., Porto, O., Telles, G.: On the consecutive ones property. Discrete Applied Mathematics 88, 325 (1998)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Shen, Z.C., Chu, C.: Bounds on the Number of Slicing, Mosaic, and General Floorplans. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 22(10), 1354 (2003)CrossRefGoogle Scholar
  11. 11.
    Shneiderman, B.: Tree visualization with tree-maps: 2-d space-filling approach. ACM Transactions on Graphics 11(1), 92 (1992)MATHCrossRefGoogle Scholar
  12. 12.
    Symeonidis, A., Tollis, I., Reczko, M.: Visualization of Functional Aspects of microRNA Regulatory Networks Using the Gene Ontology. In: Maglaveras, N., Chouvarda, I., Koutkias, V., Brause, R. (eds.) ISBMDA 2006. LNCS (LNBI), vol. 4345, pp. 13–24. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Valdes, J., Tarjan, R., Lawler, E.L.: The recognition of Series Parallel digraphs. SIAM Journal on Computing 11, 289–313 (1982)CrossRefMathSciNetGoogle Scholar
  14. 14.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Vassilis Tsiaras
    • 1
    • 2
  • Sofia Triantafilou
    • 1
    • 2
  • Ioannis G. Tollis
    • 1
    • 2
  1. 1.Institute of Computer ScienceFoundation for Research and Technology-HellasVassilika VoutonGreece
  2. 2.Department of Computer ScienceUniversity of CreteHeraklionGreece

Personalised recommendations