Visualizing Internet Evolution on the Autonomous Systems Level

  • Krists Boitmanis
  • Ulrik Brandes
  • Christian Pich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4875)


We propose a visualization approach for large dynamic graph structures with high degree variation and low diameter. In particular, we reduce visual complexity by multiple modes of representation in a single-level visualization rather than abstractions of lower levels of detail. This is useful for non-interactive display and eases dynamic layout, which we address in the online scenario.

Our approach is illustrated on a family of large networks featuring all of the above structural characteristics, the physical Internet on the autonomous systems level over time.


  1. 1.
    Agrafiotis, D.K., Bandyopadhyay, D., Farnum, M.: Radial clustergrams: Visualizing the aggregate properties of hierarchical clusters. Journal of Chemical Information and Modeling 47(1), 69–75 (2007)CrossRefGoogle Scholar
  2. 2.
    Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. Advances in Neural Information Processing Systems 18, 41–50 (2006)Google Scholar
  3. 3.
    Baur, M., Brandes, U., Gaertler, M., Wagner, D.: Drawing the AS graph in 2.5 dimensions. In: Proc. Graph Drawing 2004, pp. 43–48 (2004)Google Scholar
  4. 4.
    Brandes, U., Wagner, D.: A Bayesian paradigm for dynamic graph layout. In: Proc. Graph Drawing, pp. 236–247 (1997)Google Scholar
  5. 5.
    Branke, J.: Dynamic graph drawing. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 228–246. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Brown, J., McGregor, A.: Network performance visualization: Insight through animation. In: Proc. Passive and Active Measurement Workshop, pp. 33–41 (2000)Google Scholar
  7. 7.
    Carmignani, A., Di Battista, G., Didimo, W., Matera, F., Pizzonia, M.: Visualization of the autonomous systems interconnections with hermes. In: Proc. Graph Drawing 2000, pp. 150–163 (2000)Google Scholar
  8. 8.
    Cheswick, B., Burch, H., Branigan, S.: Mapping and visualizing the internet. In: Proc. USENIX Annual Technical Conference, pp. 1–12 (2000)Google Scholar
  9. 9.
    Cooperative Association for Internet Data Analysis (CAIDA). Visualizing Internet topology at a macroscopic scale,
  10. 10.
    Diehl, S., Görg, C.: Graphs, they are changing – dynamic graph drawing for a sequence of graphs. In: Proc. Graph Drawing, pp. 23–30 (2002)Google Scholar
  11. 11.
    Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.: Graphael: Graph animations with evolving layouts. In: Proc. Graph Drawing, pp. 98–110 (2004)Google Scholar
  12. 12.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: Proc. ACM SIGCOMM, pp. 251–262 (1999)Google Scholar
  13. 13.
    Gaertler, M., Patrignani, M.: Dynamic analysis of the autonomous system graph. In: Proceedings Inter-Domain Performance and Simulation, pp. 13–24 (2004)Google Scholar
  14. 14.
    Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In: Proc. Graph Drawing, pp. 239–250 (2004),
  15. 15.
    Gao, L.: On inferring autonomous system relationships in the internet. IEEE/ACM Transactions on Networking 9(6), 733–745 (2001)CrossRefGoogle Scholar
  16. 16.
    Jin, C., Chen, Q., Jamin, S.: Inet: Internet topology generator. Technical Report CSE-TR-433-00, University of Michigan (2000)Google Scholar
  17. 17.
    Lad, M., Massey, D., Zhang, L.: Visualizing internet routing dynamics using link-rank. Technical report, UCLA (2005)Google Scholar
  18. 18.
    Mahadevan, P., Krioukov, D., Fomenkov, M., Huffaker, B., Dimitropoulos, X., Claffy, K.C., Vahdat, A.: The internet as-level topology: Three data sources and one definitive metric. ACM SIGCOMM Computer Communication Review 36(1), 17–26 (2006)CrossRefGoogle Scholar
  19. 19.
    Neumann, P., Sheelagh, M., Carpendale, T., Agarawala, A.: Phyllotrees: Phyllotactic patterns for tree layout. In: Proc. EuroVis, pp. 59–66 (2006)Google Scholar
  20. 20.
    Stasko, J., Catrambone, R., Guzdial, M., McDonald, K.: An evaluation of space-filling information visualizations for depicting hierarchical structures. Int. J. Hum.-Comput. Stud. 53(5), 663–694 (2000)MATHCrossRefGoogle Scholar
  21. 21.
    University of Oregon. Route views project,
  22. 22.
    Vogel, H.: A better way to construct the sunflower head. Mathematical Biosciences 44, 179–189 (1979)CrossRefGoogle Scholar
  23. 23.
    Zhou, S., Mondragón, R.J.: Redundancy and robustness of AS-level internet topology and its models. Electronics Letters 40(2), 151–152 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Krists Boitmanis
    • 1
  • Ulrik Brandes
    • 1
  • Christian Pich
    • 1
  1. 1.Department of Computer & Information ScienceUniversity of Konstanz 

Personalised recommendations