LunarVis – Analytic Visualizations of Large Graphs

  • Robert Görke
  • Marco Gaertler
  • Dorothea Wagner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4875)


The analysis and the exploration of complex networks nowadays involves the identification of a multitude of analytic properties that have been ascertained to constitute crucial characteristics of networks. We propose a new layout paradigm for drawing large networks, with a focus on decompositional properties. The visualization is based on the general shape of an annulus and supports the immediate recognition of a large number of abstract features of the decomposition while drawing all elements. Our layouts offer remarkable readability of the decompositional connectivity and are capable of revealing subtle structural traits.


Betweenness Centrality Large Graph Angular Width Radial Extent Spring Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Pastor-Satorras, R., Vespignani, A.: Evolution and Structure of the Internet: A Statistical Physics Approach. Cambridge University Press, NY, USA (2004)Google Scholar
  2. 2.
    Chen, Q., Chang, H., Govindan, R., Jamin, S.: The origin of power laws in internet topologies revisited. In: Proceedings of INFOCOM 2002, vol. 2, pp. 608–617. IEEE, Los Alamitos (2002)Google Scholar
  3. 3.
    Wuchty, S., Almaas, E.: Peeling the yeast protein network. Proteomics 5(2), 444–449 (2005)CrossRefGoogle Scholar
  4. 4.
    Jeong, H., Mason, S.P., Barabási, A.L., Oltvai, Z.N.: Lethality and Centrality in Protein Networks. Nature 411 (2001) (brief communications) Google Scholar
  5. 5.
    Ducheneaut, N., Yee, N., Nickell, E., Moore, R.J.: ”Alone Together?”: Exploring the Social Dynamics of Massively Multiplayer Online Games. In: CHI 2006. Proceedings of the SIGCHI conference on Human Factors in computing systems, pp. 407–416. ACM Press, New York (2006)CrossRefGoogle Scholar
  6. 6.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: KDD 2005. Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, pp. 177–187. ACM Press, New York (2005)CrossRefGoogle Scholar
  7. 7.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70 (066111) (2004)Google Scholar
  9. 9.
    Brandes, U., Erlebach, T. (eds.): Network Analysis. LNCS, vol. 3418. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  10. 10.
    Ware, C.: Information visualization: perception for design. Morgan Kaufmann Publishers Inc., San Francisco (2000)Google Scholar
  11. 11.
    Baur, M., Brandes, U., Gaertler, M., Wagner, D.: Drawing the AS Graph in 2.5 Dimensions. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 43–48. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. In: NIPS (2005)Google Scholar
  13. 13.
    Seidman, S.B.: Network Structure and Minimum Degree. Social Networks 5, 269–287 (1983)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Freeman, L.C.: A Set of Measures of Centrality Based Upon Betweeness. Sociometry 40, 35–41 (1977)CrossRefGoogle Scholar
  15. 15.
    Gutman, R.: Reach-based routing: A new approach to shortest path algorithms optimized for road networks. In: 6th Workshop on Algorithm Engineering and Experiments, pp. 100–111 (2004)Google Scholar
  16. 16.
    Fruchterman, T.M.J., Reingold, E.M.: Graph Drawing by Force-directed Placement. Software - Practice and Experience 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  17. 17.
    Frick, A., Ludwig, A., Mehldau, H.: A fast adaptive layout algorithm for undirected graphs. In: Tamassia, R., Tollis, I(Y.) G. (eds.) GD 1994. LNCS, vol. 894, pp. 388–403. Springer, Heidelberg (1995)Google Scholar
  18. 18.
    Davidson, R., Harel, D.: Drawing graphs nicely using simulated annealing. ACM Trans. Graph. 15(4), 301–331 (1996)CrossRefGoogle Scholar
  19. 19.
    Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1999)zbMATHGoogle Scholar
  20. 20.
    Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: An Approach to Universal Topology Generation. In: Proceedings of the International Symposium on Modeling, Analysis and Simulation of Computer and Tele. (2001)Google Scholar
  21. 21.
    Wagner, D., Willhalm, T.: Speed-Up Techniques for Shortest-Path Computations. In: STACS. 24th International Symposium on Theoretical Aspects of Computer Science, pp. 23–36 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Robert Görke
    • 1
  • Marco Gaertler
    • 1
  • Dorothea Wagner
    • 1
  1. 1.Universität Karlsruhe (TH)Germany

Personalised recommendations