Advertisement

Universal Sets of n Points for 1-Bend Drawings of Planar Graphs with n Vertices

  • Hazel Everett
  • Sylvain Lazard
  • Giuseppe Liotta
  • Stephen Wismath
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4875)

Abstract

This paper shows that any planar graph with n vertices can be point-set embedded with at most one bend per edge on a universal set of n points in the plane. An implication of this result is that any number of planar graphs admit a simultaneous embedding without mapping with at most one bend per edge.

Keywords

Planar Graph Left Endpoint Outerplanar Graph Planar Drawing Convex Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Comput. Geom. 36(2), 117–130 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chrobak, M., Karloff, H.: A lower bound on the size of universal sets for planar graphs. SIGACT News 20(4), 83–86 (1989)CrossRefGoogle Scholar
  3. 3.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.K.: Curve-constrained drawings of planar graphs. Computational Geometry 30, 1–23 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified points. Amer. Math. Monthly 98(2), 165–166 (1991)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. Journal of Graph Algorithms and Applications 6(1), 115–129 (2002)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all n-vertex planar graphs. Inf. Process. Lett. 92(2), 95–98 (2004)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graph and Combinatorics 17, 717–728 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Schnyder, W.: Embedding planar graphs on the grid. In: SODA 1990. Proc. 1st ACM-SIAM Sympos. Discrete Algorithms, pp. 138–148 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hazel Everett
    • 1
  • Sylvain Lazard
    • 1
  • Giuseppe Liotta
    • 2
  • Stephen Wismath
    • 3
  1. 1.LORIA, INRIA LorraineNancy UniversitéNancyFrance
  2. 2.Dip. di Ingegneria Elettronica e dell’InformazioneUniversità degli Studi di Perugia 
  3. 3.Department of Mathematics and Computer ScienceUniversity of LethbridgeLethbridgeCanada

Personalised recommendations