Colorability in Orthogonal Graph Drawing

  • Jan Štola
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4875)

Abstract

This paper studies the question: What is the maximum integer k b,n such that every k b,n-colorable graph has a b-bend n-dimensional orthogonal box drawing?

We give an exact answer for the orthogonal line drawing in all dimensions and for the 3-dimensional rectangle visibility representation. We present an upper and lower bound for the 3-dimensional orthogonal drawing by rectangles and general boxes. Particularly, we improve the best known upper bound for the 3-dimensional orthogonal box drawing from 183 to 42 and the lower bound from 3 to 22.

References

  1. 1.
    Wood, D.R.: Three-Dimensional Orthogonal Graph Drawing, Ph.D. Thesis, School of Computer Science and Software Engineering, Monash University (2000)Google Scholar
  2. 2.
    Fekete, S.P., Meijer, H.: Rectangle and box visibility graphs in 3D. Int. J. Comput. Geom. Appl. 97, 1–28 (1997)MathSciNetGoogle Scholar
  3. 3.
    Fekete, S.P., Houle, M.E., Whitesides, S.: New results on a visibility representation of graphs in 3D. In: Proc. Graph Drawing, vol. 95, pp. 234–241 (1995)Google Scholar
  4. 4.
    Bose, P., Dean, A., Hutchinson, J., Shermer, T.: On rectangle visibility graphs. In: Proc. Graph Drawing, vol. 96, pp. 25–44 (1996)Google Scholar
  5. 5.
    Hutchinson, J.P., Shermer, T., Vince, A.: On representations of some thickness-two graphs. Comput. Geom. 13(3), 161–171 (1999)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dean, A.M., Hutchinson, J.P.: Rectangle-visibility Layouts of Unions and Products of Trees. J. Graph Algorithms Appl., 1–21 (1998)Google Scholar
  7. 7.
    Shermer, T.: Block visibility representations III: External visibility and complexity. In: Fiala, K., Sack (eds.) Proc. of 8th Canadian Conf. on Comput. Geom. Int. Informatics Series, vol. 5, pp. 234–239. Carleton University Press, Ottawa (1996)Google Scholar
  8. 8.
    Fekete, S.P., Houle, M.E., Whitesides, S.:: The wobbly logic engine: proving hardness of non-rigid geometric graph representation problems, Report No. 97.273, Angewandte Mathematik und Informatik Universität zu Köln (1997)Google Scholar
  9. 9.
    Štola, J.: Chromatic invariants in graph drawing, Master’s Thesis, Department of Applied Mathematics, Charles University, Prague, Czech Republic (2006), http://kam.mff.cuni.cz/~stola/chromaticInvariants.pdf
  10. 10.
    Chvátal, V.: On finite polarized partition relations. Canad. Math. Bul. 12, 321–326 (1969)MATHGoogle Scholar
  11. 11.
    Beineke, L.W., Schwenk, A.J.: On a bipartite form of the Ramsey problem. In: Proc. 5th British Combin. Conf. 1975, Congr. Numer., vol. XV, pp. 17–22 (1975)Google Scholar
  12. 12.
    Biedl, T., Shermer, T., Whitesides, S., Wismath, S.: Bounds for orthogonal 3D graph drawing. J. Graph Alg. Appl. 3(4), 63–79 (1999)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jan Štola
    • 1
  1. 1.Department of Applied MathematicsCharles UniversityPragueCzech Republic

Personalised recommendations