Drawing Colored Graphs with Constrained Vertex Positions and Few Bends per Edge

  • Emilio Di Giacomo
  • Giuseppe Liotta
  • Francesco Trotta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4875)

Abstract

Hamiltonicity, book embeddability, and point-set embedda- bility of planar graphs are strictly related concepts. We exploit the interplay between these notions to describe colored sets of points and to design polynomial-time algorithms to embed k-colored planar graphs on these sets such that the resulting drawings have \(\mathcal{O}(k)\) bends per edge.

References

  1. 1.
    Badent, M., Di Giacomo, E., Liotta, G.: Drawing colored graphs on colored points. In: Dehne, F.K.H.A., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 102–113. Springer, Heidelberg (2007)Google Scholar
  2. 2.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River, NJ (1999)MATHCrossRefGoogle Scholar
  3. 3.
    Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H., Trotta, F., Wismath, S.K.: k-colored point-set embeddability of outerplanar graphs. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 318–329. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.K.: Curve-constrained drawings of planar graphs. Computational Geometry 30, 1–23 (2005)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Di Giacomo, E., Liotta, G., Trotta, F.: On embedding a graph on two sets of points. IJFCS, Special Issue on Graph Drawing 17(5), 1071–1094 (2006)MATHGoogle Scholar
  6. 6.
    Kaneko, A., Kano, M.: Discrete geometry on red and blue points in the plane - a survey. In: Discrete & Computational Geometry, Algorithms and Combinatories, vol. 25, pp. 551–570. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer, Heidelberg (2001)MATHGoogle Scholar
  8. 8.
    Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. Journal of Graph Algorithms and Applications 6(1), 115–129 (2002)MATHMathSciNetGoogle Scholar
  9. 9.
    Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graph and Combinatorics 17, 717–728 (2001)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Emilio Di Giacomo
    • 1
  • Giuseppe Liotta
    • 1
  • Francesco Trotta
    • 1
  1. 1.Dip. di Ingegneria Elettronica e dell’InformazioneUniversità degli Studi di Perugia 

Personalised recommendations