Advertisement

Clustered Planarity: Small Clusters in Eulerian Graphs

  • Eva Jelínková
  • Jan Kára
  • Jan Kratochvíl
  • Martin Pergel
  • Ondřej Suchý
  • Tomáš Vyskočil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4875)

Abstract

We present several polynomial-time algorithms for c-planarity testing for clustered graphs with clusters of size at most three. The most general result concerns a special class of Eulerian graphs, namely graphs obtained from a fixed-size 3-connected graph by multiplying and then subdividing edges. We further give algorithms for 3-connected graphs, and for graphs with small faces. The last result applies with no restrictions on the cluster size.

Keywords

Planar Graph Small Cluster Connected Subgraph Outer Face Cyclic Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cornelsen, S., Wagner, D.: Completely Connected Clustered Graphs. Journal of Discrete Algorithms 4(2), 313–323 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: Clustering Cycles into Cycles of Clusters. Journal of Graph Algorithms and Applications, Special Issue on the 2004 Symposium on Graph Drawing, GD 2004 9(3), 391–413 (2005)Google Scholar
  3. 3.
    Dahlhaus, E.: Linear time algorithm to recognize clustered planar graphs and its parallelization. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 239–248. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Feng, Q.W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995)Google Scholar
  5. 5.
    Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: C-planarity testing of clustered graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 220–235. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Subgraph induces planar connectivity augmentation. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 261–272. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Eva Jelínková
    • 1
  • Jan Kára
    • 2
  • Jan Kratochvíl
    • 1
    • 2
  • Martin Pergel
    • 1
  • Ondřej Suchý
    • 1
  • Tomáš Vyskočil
    • 1
  1. 1.Department of Applied Mathematics 
  2. 2.Institute for Theoretical Computer ScienceCharles UniversityPrahaCzech Republic

Personalised recommendations