Efficient C-Planarity Testing for Embedded Flat Clustered Graphs with Small Faces

  • Giuseppe Di Battista
  • Fabrizio Frati
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4875)

Abstract

Let C be a clustered graph and suppose that the planar embedding of its underlying graph is fixed. Is testing the c-planarity of C easier than in the variable embedding setting? In this paper we give a first contribution towards answering the above question. Namely, we characterize c-planar embedded flat clustered graphs with at most five vertices per face and give an efficient testing algorithm for such graphs. The results are based on a more general methodology that shades new light on the c-planarity testing problem.

References

  1. 1.
    Cornelsen, S., Wagner, D.: Completely connected clustered graphs. Journal of Discrete Algorithms 4(2), 313–323 (2006)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cortese, P.F., Di Battista, G.: Clustered planarity. In: ACM SoCG 2005, pp. 32–34 (2005)Google Scholar
  3. 3.
    Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: Clustering cycles into cycles of clusters. Journal of Graph Algorithms and Applications 9(3), 391–413 (2005)MathSciNetGoogle Scholar
  4. 4.
    Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: On embedding a cycle in a plane graph. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 49–60. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Dahlhaus, E.: A linear time algorithm to recognize clustered graphs and its parallelization. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 239–248. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Di Battista, G., Frati, F.: Efficient c-planarity testing for embedded flat clustered graphs with small faces. Tech. Report RT-DIA-119-2007, Dip. Inf. e Aut., Univ. Roma Tre (2007)Google Scholar
  7. 7.
    Feng, Q., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995)Google Scholar
  8. 8.
    Goodrich, M.T., Lueker, G.S., Sun, J.Z.: C-planarity of extrovert clustered graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 211–222. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Advances in c-planarity testing of clustered graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 220–235. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Kirkpatrick, D.G.: Establishing order in planar subdivisions. Discrete & Computational Geometry 3, 267–280 (1988)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Nishizeki, T., Chiba, N.: Planar Graphs: Theory and Algorithms. North-Holland (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Giuseppe Di Battista
    • 1
  • Fabrizio Frati
    • 1
  1. 1.Dipartimento di Informatica e AutomazioneUniversità di Roma Tre 

Personalised recommendations