Advertisement

Efficient C-Planarity Testing for Embedded Flat Clustered Graphs with Small Faces

  • Giuseppe Di Battista
  • Fabrizio Frati
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4875)

Abstract

Let C be a clustered graph and suppose that the planar embedding of its underlying graph is fixed. Is testing the c-planarity of C easier than in the variable embedding setting? In this paper we give a first contribution towards answering the above question. Namely, we characterize c-planar embedded flat clustered graphs with at most five vertices per face and give an efficient testing algorithm for such graphs. The results are based on a more general methodology that shades new light on the c-planarity testing problem.

Keywords

Span Tree Planar Graph Linear Time Dual Graph Testing Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cornelsen, S., Wagner, D.: Completely connected clustered graphs. Journal of Discrete Algorithms 4(2), 313–323 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cortese, P.F., Di Battista, G.: Clustered planarity. In: ACM SoCG 2005, pp. 32–34 (2005)Google Scholar
  3. 3.
    Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: Clustering cycles into cycles of clusters. Journal of Graph Algorithms and Applications 9(3), 391–413 (2005)MathSciNetGoogle Scholar
  4. 4.
    Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: On embedding a cycle in a plane graph. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 49–60. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Dahlhaus, E.: A linear time algorithm to recognize clustered graphs and its parallelization. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 239–248. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Di Battista, G., Frati, F.: Efficient c-planarity testing for embedded flat clustered graphs with small faces. Tech. Report RT-DIA-119-2007, Dip. Inf. e Aut., Univ. Roma Tre (2007)Google Scholar
  7. 7.
    Feng, Q., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995)Google Scholar
  8. 8.
    Goodrich, M.T., Lueker, G.S., Sun, J.Z.: C-planarity of extrovert clustered graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 211–222. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Advances in c-planarity testing of clustered graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 220–235. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Kirkpatrick, D.G.: Establishing order in planar subdivisions. Discrete & Computational Geometry 3, 267–280 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Nishizeki, T., Chiba, N.: Planar Graphs: Theory and Algorithms. North-Holland (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Giuseppe Di Battista
    • 1
  • Fabrizio Frati
    • 1
  1. 1.Dipartimento di Informatica e AutomazioneUniversità di Roma Tre 

Personalised recommendations