Advertisement

Multi-circular Layout of Micro/Macro Graphs

  • Michael Baur
  • Ulrik Brandes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4875)

Abstract

We propose a layout algorithm for micro/macro graphs, i.e. relational structures with two levels of detail. While the micro-level graph is given, the macro-level graph is induced by a given partition of the micro-level vertices. A typical example is a social network of employees organized into different departments. We do not impose restrictions on the macro-level layout other than sufficient thickness of edges and vertices, so that the micro-level graph can be placed on top of the macro-level graph. For the micro-level graph we define a combinatorial multi-circular embedding and present corresponding layout algorithms based on edge crossing reduction strategies.

Keywords

Binary Decision Diagram Layout Algorithm Quotient Graph Partition Versus Macro Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Archambault, D., Munzner, T., Auber, D.: Topolayout: Multi-level graph layout by topological features. IEEE Trans. Visual. and Comp. Graphics 13(2), 305–317 (2007)CrossRefGoogle Scholar
  2. 2.
    Bachmaier, C.: A radial adaptation of the sugiyama framework for visualizing hierarchical information. IEEE Trans. Visual. and Comp. Graphics 13(3), 585–594 (2007)MathSciNetGoogle Scholar
  3. 3.
    Balzer, M., Deussen, O.: Level-of-detail visualization of clustered graph layouts. In: APVIS 2007. Asia-Pacific Symposium on Visualisation 2007 (2007)Google Scholar
  4. 4.
    Baur, M., Brandes, U.: Crossing reduction in circular layouts. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 332–343. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Brandes, U., Erlebach, T. (eds.): Network Analysis. LNCS, vol. 3418. Springer, Heidelberg (2005)MATHGoogle Scholar
  6. 6.
    Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. In: Monographs on Statistics and Applied Probability, 2nd edn., Chapman & Hall/CRC (2001)Google Scholar
  7. 7.
    Duncan, C.A., Efrat, A., Kobourov, S.G., Wenk, C.: Drawing with fat edges. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 162–177. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Eades, P., Kelly, D.: Heuristics for reducing crossings in 2-layered networks. Ars Combinatoria 21(A), 89–98 (1986)MathSciNetGoogle Scholar
  9. 9.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Software - Practice and Experience 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  10. 10.
    Gansner, E.R., Koren, Y.: Improved circular layouts. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 386–398. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Gansner, E.R., North, S.C.: Improved force-directed layouts. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 364–373. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Harel, D., Koren, Y.: Drawing graphs with non-uniform vertices. In: AVI 2002. Proc. Work. Conf. on Advanced Visual Interfaces, pp. 157–166. ACM Press, New York (2002)Google Scholar
  13. 13.
    Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Trans. Visual. and Comp. Graphics 12(5), 741–748 (2006)CrossRefGoogle Scholar
  14. 14.
    Kaufmann, M., Wiese, R.: Maintaining the mental map for circular drawings. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 12–22. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Krebs, V.E.: Visualizing human networks. Release 1.0, pp. 1–25 (February 1996)Google Scholar
  16. 16.
    Krempel, L.: Visualisierung komplexer Strukturen. Grundlagen der Darstellung mehrdimensionaler Netzwerke. Campus (2005)Google Scholar
  17. 17.
    Masuda, S., Kashiwabara, T., Nakajima, K., Fujisawa, T.: On the \(\mathcal{NP}\)-completeness of a computer network layout problem. In: Proc. 20th IEEE Int. Symposium on Circuits and Systems 1987, pp. 292–295 (1987)Google Scholar
  18. 18.
    Matuszewski, C., Schönfeld, R., Molitor, P.: Using sifting for k-layer straightline crossing minimization. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 217–224. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In: Proc. IEEE/ACM Conf. Computer-Aided Design, pp. 42–47. IEEE Society, Los Alamitos (1993)Google Scholar
  20. 20.
    Six, J.M., Tollis, I.G.: A framework for user-grouped circular drawings. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 135–146. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Wang, X., Miyamoto, I.: Generating customized layouts. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 504–515. Springer, Heidelberg (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Michael Baur
    • 1
  • Ulrik Brandes
    • 2
  1. 1.Department of Computer ScienceUniversität Karlsruhe (TH)Germany
  2. 2.Department of Computer & Information ScienceUniversity of KonstanzGermany

Personalised recommendations