Multi-circular Layout of Micro/Macro Graphs

  • Michael Baur
  • Ulrik Brandes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4875)


We propose a layout algorithm for micro/macro graphs, i.e. relational structures with two levels of detail. While the micro-level graph is given, the macro-level graph is induced by a given partition of the micro-level vertices. A typical example is a social network of employees organized into different departments. We do not impose restrictions on the macro-level layout other than sufficient thickness of edges and vertices, so that the micro-level graph can be placed on top of the macro-level graph. For the micro-level graph we define a combinatorial multi-circular embedding and present corresponding layout algorithms based on edge crossing reduction strategies.




  1. 1.
    Archambault, D., Munzner, T., Auber, D.: Topolayout: Multi-level graph layout by topological features. IEEE Trans. Visual. and Comp. Graphics 13(2), 305–317 (2007)CrossRefGoogle Scholar
  2. 2.
    Bachmaier, C.: A radial adaptation of the sugiyama framework for visualizing hierarchical information. IEEE Trans. Visual. and Comp. Graphics 13(3), 585–594 (2007)MathSciNetGoogle Scholar
  3. 3.
    Balzer, M., Deussen, O.: Level-of-detail visualization of clustered graph layouts. In: APVIS 2007. Asia-Pacific Symposium on Visualisation 2007 (2007)Google Scholar
  4. 4.
    Baur, M., Brandes, U.: Crossing reduction in circular layouts. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 332–343. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Brandes, U., Erlebach, T. (eds.): Network Analysis. LNCS, vol. 3418. Springer, Heidelberg (2005)MATHGoogle Scholar
  6. 6.
    Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. In: Monographs on Statistics and Applied Probability, 2nd edn., Chapman & Hall/CRC (2001)Google Scholar
  7. 7.
    Duncan, C.A., Efrat, A., Kobourov, S.G., Wenk, C.: Drawing with fat edges. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 162–177. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Eades, P., Kelly, D.: Heuristics for reducing crossings in 2-layered networks. Ars Combinatoria 21(A), 89–98 (1986)MathSciNetGoogle Scholar
  9. 9.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Software - Practice and Experience 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  10. 10.
    Gansner, E.R., Koren, Y.: Improved circular layouts. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 386–398. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Gansner, E.R., North, S.C.: Improved force-directed layouts. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 364–373. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Harel, D., Koren, Y.: Drawing graphs with non-uniform vertices. In: AVI 2002. Proc. Work. Conf. on Advanced Visual Interfaces, pp. 157–166. ACM Press, New York (2002)Google Scholar
  13. 13.
    Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Trans. Visual. and Comp. Graphics 12(5), 741–748 (2006)CrossRefGoogle Scholar
  14. 14.
    Kaufmann, M., Wiese, R.: Maintaining the mental map for circular drawings. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 12–22. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Krebs, V.E.: Visualizing human networks. Release 1.0, pp. 1–25 (February 1996)Google Scholar
  16. 16.
    Krempel, L.: Visualisierung komplexer Strukturen. Grundlagen der Darstellung mehrdimensionaler Netzwerke. Campus (2005)Google Scholar
  17. 17.
    Masuda, S., Kashiwabara, T., Nakajima, K., Fujisawa, T.: On the \(\mathcal{NP}\)-completeness of a computer network layout problem. In: Proc. 20th IEEE Int. Symposium on Circuits and Systems 1987, pp. 292–295 (1987)Google Scholar
  18. 18.
    Matuszewski, C., Schönfeld, R., Molitor, P.: Using sifting for k-layer straightline crossing minimization. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 217–224. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In: Proc. IEEE/ACM Conf. Computer-Aided Design, pp. 42–47. IEEE Society, Los Alamitos (1993)Google Scholar
  20. 20.
    Six, J.M., Tollis, I.G.: A framework for user-grouped circular drawings. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 135–146. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Wang, X., Miyamoto, I.: Generating customized layouts. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 504–515. Springer, Heidelberg (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Michael Baur
    • 1
  • Ulrik Brandes
    • 2
  1. 1.Department of Computer ScienceUniversität Karlsruhe (TH)Germany
  2. 2.Department of Computer & Information ScienceUniversity of KonstanzGermany

Personalised recommendations