On Planar Polyline Drawings

  • Huaming Zhang
  • Sadish Sadasivam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4875)


We present a linear time algorithm that produces a planar polyline drawing for a plane graph with n vertices in a grid of size bounded by (p + 1) ×(n − 2), where \(p \leq (\lfloor \frac{2n-5}{3}\rfloor)\). It uses at most \(p \leq \lfloor\frac{2n-5}{3}\rfloor\) bends, and each edge uses at most one bend. Compared with the area optimal polyline drawing algorithm in [3], our algorithm uses a larger grid size bound in trade for a smaller bound on the total number of bends. Their bend bound is (n − 2). Our algorithm is based on a transformation from Schnyder’s realizers [6,7] of maximal plane graphs to transversal structures [4,5] for maximal internally 4-connected plane graphs. This transformation reveals important relations between the two combinatorial structures for plane graphs, which is of independent interest.


  1. 1.
    di Battista, G., Eades, P., Tamassia, R., Tollis, I.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Englewood Cliffs (1998)Google Scholar
  2. 2.
    Bonichon, N., Le Saëc, B., Mosbah, M.: Wagner’s theorem on realizers. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 1043–1053. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Bonichon, N., Le Saëc, B., Mosbah, M.: Optimal area algorithm for planar polyline drawings. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 35–46. Springer, Heidelberg (2002)Google Scholar
  4. 4.
    Fusy, É.: Transversal structures on triangulations, with application to straight-line drawing. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 177–188. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    He, X.: On finding the rectangular duals of planar triangular graphs. SIAM Journal on Computing 22, 1218–1226 (1993)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Schnyder, W.: Planar graphs and poset dimension. Order 5, 323–343 (1989)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Schnyder, W.: Embedding planar graphs on the grid. In: Proc. of the First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 138–148. SIAM, Philadelphia (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Huaming Zhang
    • 1
  • Sadish Sadasivam
    • 1
  1. 1.Computer Science DepartmentUniversity of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations