Advertisement

Cover Contact Graphs

  • Nieves Atienza
  • Natalia de Castro
  • Carmen Cortés
  • M. Ángeles Garrido
  • Clara I. Grima
  • Gregorio Hernández
  • Alberto Márquez
  • Auxiliadora Moreno
  • Martin Nöllenburg
  • José Ramon Portillo
  • Pedro Reyes
  • Jesús Valenzuela
  • Maria Trinidad Villar
  • Alexander Wolff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4875)

Abstract

We study problems that arise in the context of covering certain geometric objects (so-called seeds, e.g., points or disks) by a set of other geometric objects (a so-called cover, e.g., a set of disks or homothetic triangles). We insist that the interiors of the seeds and the cover elements are pairwise disjoint, but they can touch. We call the contact graph of a cover a cover contact graph (CCG). We are interested in two types of tasks: (a) deciding whether a given seed set has a connected CCG, and (b) deciding whether a given graph has a realization as a CCG on a given seed set. Concerning task (a) we give efficient algorithms for the case that seeds are points and covers are disks or triangles. We show that the problem becomes NP-hard if seeds and covers are disks. Concerning task (b) we show that it is even NP-hard for point seeds and disk covers (given a fixed correspondence between vertices and seeds).

Keywords

Planar Graph Voronoi Diagram Geometric Object Point Seed Graph Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abellanas, M., Bereg, S., Hurtado, F., Olaverri, A.G., Rappaport, D., Tejel, J.: Moving coins. Comput. Geom. Theory Appl. 34(1), 35–48 (2006)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Abellanas, M., de Castro, N., Hernández, G., Márquez, A., Moreno-Jiménez, C.: Gear system graphs. Manuscript (2006)Google Scholar
  3. 3.
    Atienza, N., de Castro, N., Cortés, C., Garrido, M. Á., Grima, C.I., Hernández, G., Márquez, A., Moreno, A., Nöllenburg, M., Portillo, J.R., Reyes, P., Valenzuela, J., Villar, M.T., Wolff, A.: Cover contact graphs. Technical Report 2007-18, Fakultät für Informatik, Universität Karlsruhe (September 2007), http://www.ubka.uni-karlsruhe.de/indexer-vvv/ira/2007/18
  4. 4.
    Collins, C.R., Stephenson, K.: A circle packing algorithm. Comput. Geom. Theory Appl. 25(3), 233–256 (2003)zbMATHMathSciNetGoogle Scholar
  5. 5.
    de Fraysseix, H., de Mendez, P.O.: Representations by contact and intersection of segments. Algorithmica 47(4), 453–463 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fortune, S.: A sweepline algorithm for Voronoi diagrams. In: SoCG 1986. Proc. 2nd Annu. Sympos. Comput. Geom., pp. 313–322 (1986)Google Scholar
  7. 7.
    Giménez, O., Noy, M.: The number of planar graphs and properties of random planar graphs. In: Martínez, C. (ed.) ICAA 2005. Proc. Internat. Conf. Anal. Algorithms, DMTCS Proceedings, vol. AD, pp. 147–156 (2005)Google Scholar
  8. 8.
    Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. J. Graph Algorithms Appl. 6(1), 115–129 (2002)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Koebe, P.: Kontaktprobleme der konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Klasse 88, 141–164 (1936)Google Scholar
  10. 10.
    Mitchell, J.S.B.: L1 shortest paths among polygonal obstacles in the plane. Algorithmica 8, 55–88 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Pach, J., Agarwal, P.K.: Combinatorial Geometry. John Wiley and Sons, New York (1995) (contains a proof of Koebe’s theorem)zbMATHGoogle Scholar
  12. 12.
    Sachs, H.: Coin graphs, polyhedra, and conformal mapping. Discrete Math. 134(1-3), 133–138 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Thurston, W.P.: The Geometry and Topology of 3-Manifolds. Princeton University Notes, Princeton (1980)Google Scholar
  14. 14.
    Toussaint, G.T.: A graph-theoretical primal sketch. In: Toussaint, G.T. (ed.) Computational Morphology: A Computational Geometric Approach to the Analysis of Form, North-Holland, pp. 229–260 (1988)Google Scholar
  15. 15.
    Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H.A. (ed.) New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370. Springer, Heidelberg (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nieves Atienza
    • 2
  • Natalia de Castro
    • 2
  • Carmen Cortés
    • 2
  • M. Ángeles Garrido
    • 2
  • Clara I. Grima
    • 2
  • Gregorio Hernández
    • 1
  • Alberto Márquez
    • 2
  • Auxiliadora Moreno
    • 2
  • Martin Nöllenburg
    • 3
  • José Ramon Portillo
    • 2
  • Pedro Reyes
    • 2
  • Jesús Valenzuela
    • 2
  • Maria Trinidad Villar
    • 2
  • Alexander Wolff
    • 4
  1. 1.Dept. Matemática Aplicada, Fac. InformáticaUniv. Politécnica de MadridSpain
  2. 2.Universidad de SevillaSpain
  3. 3.Fakultät für InformatikUniversität KarlsruheGermany
  4. 4.Faculteit Wiskunde en InformaticaTU EindhovenThe Netherlands

Personalised recommendations