Point-Set Embedding of Trees with Edge Constraints

(Extended Abstract)
  • Emilio Di Giacomo
  • Walter Didimo
  • Giuseppe Liotta
  • Henk Meijer
  • Stephen Wismath
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4875)


Given a graph G with n vertices and a set S of n points in the plane, a point-set embedding of G on S is a planar drawing such that each vertex of G is mapped to a distinct point of S. A geometric point-set embedding is a point-set embedding with no edge bends. This paper studies the following problem: The input is a set S of n points, a planar graph G with n vertices, and a geometric point-set embedding of a subgraph G′ ⊂ G on a subset of S. The desired output is a point-set embedding of G on S that includes the given partial drawing of G′. We concentrate on trees and show how to compute the output in O(n 2 logn) time and with at most 1 + 2 ⌈k/2 ⌉ bends per edge, where k is the number of vertices of the given subdrawing. We also prove that there are instances of the problem which require at least k − 3 bends for some of the edges.


Planar Graph Convex Polygon Dual Graph Outerplanar Graph Planar Drawing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Badent, M., Di Giacomo, E., Liotta, G.: Drawing colored graphs on colored points. In: WADS 2007. LNCS, Springer, Heidelberg (2007)Google Scholar
  2. 2.
    Bose, P.: On embedding an outer-planar graph on a point set. Computational Geometry: Theory and Applications 23, 303–312 (2002)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Bose, P., McAllister, M., Snoeyink, J.: Optimal algorithms to embed trees in a point set. Journal of Graph Algorithms and Applications 2(1), 1–15 (1997)MathSciNetGoogle Scholar
  4. 4.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-Hall, Upper Saddle River (1999)zbMATHCrossRefGoogle Scholar
  5. 5.
    Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H., Trotta, F., Wismath, S.K.: k-colored point-set embeddability of outerplanar graphs. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 318–329. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Di Giacomo, E., Liotta, G., Trotta, F.: On embedding a graph on two sets of points. International Journal of Foundations of Computer Science, Special Issue on Graph Drawing 17(5), 1071–1094 (2006)zbMATHGoogle Scholar
  7. 7.
    Halton, J.H.: On the thickness of graphs of given degree. Information Sciences 54, 219–238 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ikebe, Y., Perles, M., Tamura, A., Tokunaga, S.: The rooted tree embedding problem into points in the plane. Discrete Comput. Geometry 11, 51–63 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kaneko, A., Kano, M.: Straight line embeddings of rooted star forests in the plane. Discrete Appl. Mathematics 101, 167–175 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kaneko, A., Kano, M.: Semi-balanced partitions of two sets of points and embeddings of rooted forests. Int. J. Comput. Geom. Appl. 15(3), 229–238 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  12. 12.
    Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. Journal of Graph Algorithms and Applications 6(1), 115–129 (2002)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Nishizeki, T., Rahman, M.S.: Planar Graph Drawing. Lecture Notes Series on Computing, vol. 12. World Scientific, Singapore (2004)zbMATHGoogle Scholar
  14. 14.
    O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford Univ. Press, Oxford (1987)zbMATHGoogle Scholar
  15. 15.
    Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs and Combinatorics 17, 717–728 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Patrignani, M.: On extending a partial straight-line drawing. International Journal of Foundations of Computer Science, Special Issue on Graph Drawing 17(5), 1061–1069 (2006)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction, 3rd edn. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Emilio Di Giacomo
    • 1
  • Walter Didimo
    • 1
  • Giuseppe Liotta
    • 1
  • Henk Meijer
    • 2
  • Stephen Wismath
    • 3
  1. 1.Dip. di Ingegneria Elettronica e dell’InformazioneUniversità degli Studi di Perugia 
  2. 2.Roosevelt AcademyThe Netherlands
  3. 3.Department of Mathematics and Computer ScienceUniversity of Lethbridge 

Personalised recommendations