Moving Vertices to Make Drawings Plane

  • Xavier Goaoc
  • Jan Kratochvíl
  • Yoshio Okamoto
  • Chan-Su Shin
  • Alexander Wolff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4875)

Abstract

In John Tantalo’s on-line game Planarity the player is given a non-plane straight-line drawing of a planar graph. The aim is to make the drawing plane as quickly as possible by moving vertices. In this paper we investigate the related problem MinMovedVertices which asks for the minimum number of vertex moves. First, we show that MinMovedVertices is NP-hard and hard to approximate. Second, we establish a connection to the graph-drawing problem 1BendPointSetEmbeddability, which yields similar results for that problem. Third, we give bounds for the behavior of MinMovedVertices on trees and general planar graphs.

References

  1. 1.
    Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935)Google Scholar
  2. 2.
    Fáry, I.: On straight-line representation of planar graphs. Acta Sci. Math. (Szeged) 11, 229–233 (1948)Google Scholar
  3. 3.
    Goaoc, X., Kratochvíl, J., Okamoto, Y., Shin, C.-S., Wolff, A.: Moving vertices to make drawings plane (June 2007), http://arxiv.org/abs/0706.1002
  4. 4.
    Kang, M., Schacht, M., Verbitsky, O.: How much work does it take to straighten a plane graph out? (June 2007), http://arxiv.org/abs/0707.3373
  5. 5.
    Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. J. Graph Algorithms Appl. 6(1), 115–129 (2002)MATHMathSciNetGoogle Scholar
  6. 6.
    Knuth, D.E., Raghunathan, A.: The problem of compatible representatives. SIAM J. Discr. Math. 5(3), 422–427 (1992)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. J. Visual Languages and Computing 6(2), 183–210 (1995)CrossRefGoogle Scholar
  9. 9.
    Pach, J., Tardos, G.: Untangling a polygon. Discrete Comput. Geom. 28(4), 585–592 (2002)MATHMathSciNetGoogle Scholar
  10. 10.
    Schensted, C.: Longest increasing and decreasing subsequences. Canadian Journal of Mathematics 13, 179–191 (1961)MATHMathSciNetGoogle Scholar
  11. 11.
    Spillner, A., Wolff, A.: Untangling a planar graph (September 2007), http://arxiv.org/abs/0709.0170
  12. 12.
    Stein, S.K.: Convex maps. Proc. Amer. Math. Soc. 2, 464–466 (1951)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Tantalo, J.: Planarity (2007), http://planarity.net/
  14. 14.
    Verbitsky, O.: On the obfuscation complexity of planar graphs (May & June 2007), http://arxiv.org/abs/0705.3748
  15. 15.
    Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresbericht Deutsch. Math.-Verein. 46, 26–32 (1936)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Xavier Goaoc
    • 1
  • Jan Kratochvíl
    • 2
  • Yoshio Okamoto
    • 3
  • Chan-Su Shin
    • 4
  • Alexander Wolff
    • 5
  1. 1.LORIAINRIA LorraineNancyFrance
  2. 2.Dept. Applied Math. and Inst. Theoret. Comp.ScienceCharles Univ.Czech Rep.
  3. 3.Dept. Information and Computer SciencesToyohashi Univ. of TechnologyJapan
  4. 4.School of Digital Inform. Eng.Hankuk Univ. of Foreign StudiesYonginKorea
  5. 5.Faculteit Wiskunde en InformaticaTU EindhovenThe Netherlands

Personalised recommendations