Straight-Line Orthogonal Drawings of Binary and Ternary Trees

  • Fabrizio Frati
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4875)


In this paper we provide upper and lower bounds on the area requirement of straight-line orthogonal drawings of n-node binary and ternary trees. Namely, we show algorithms for constructing order-preserving straight-line orthogonal drawings of binary trees in O(n1.5) area, straight-line orthogonal drawings of ternary trees in O(n1.631) area, and straight-line orthogonal drawings of complete ternary trees in O(n1.262) area. As far as we know, the ones we present are the first algorithms achieving sub-quadratic area for these problems. Further, for upward order-preserving straight-line orthogonal drawings of binary trees and for order-preserving straight-line orthogonal drawings of ternary trees we provide Ω(n2) area lower bounds, that we also prove to be tight.


  1. 1.
    Chan, T.M., Goodrich, M.T., Rao Kosaraju, S., Tamassia, R.: Optimizing area and aspect ratio in straight-line orthogonal tree drawings. Comput. Geom. 23(2), 153–162 (2002)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chan, T.M.: A near-linear area bound for drawing binary trees. Algorithmica 34(1), 1–13 (2002)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Crescenzi, P., Di Battista, G., Piperno, A.: A note on optimal area algorithms for upward drawings of binary trees. Comput. Geom. 2, 187–200 (1992)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River, NJ (1999)MATHCrossRefGoogle Scholar
  5. 5.
    Dolev, D., Trickey, H.W.: On linear area embedding of planar graphs. Technical report, Stanford, USA (1981)Google Scholar
  6. 6.
    Garg, A., Goodrich, M.T., Tamassia, R.: Planar upward tree drawings with optimal area. Int. J. Comput. Geometry Appl. 6(3), 333–356 (1996)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Garg, A., Rusu, A.: Area-efficient order-preserving planar straight-line drawings of ordered trees. Int. J. Comput. Geometry Appl. 13(6), 487–505 (2003)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Garg, A., Rusu, A.: Straight-line drawings of general trees with linear area and arbitrary aspect ratio. In: ICCSA, vol. (3), pp. 876–885 (2003)Google Scholar
  9. 9.
    Kim, S.K.: Simple algorithms for orthogonal upward drawings of binary and ternary trees sung. In: CCCG, pp. 115–120 (1995)Google Scholar
  10. 10.
    Shiloach, Y.: Arrangements of Planar Graphs on the Planar Lattice. PhD thesis, Weizmann Institute for Science (1976)Google Scholar
  11. 11.
    Shin, C.S., Kim, S.K., Chwa, K.Y.: Area-efficient algorithms for straight-line tree drawings. Comput. Geom. 15(4), 175–202 (2000)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Comp. 30(2), 135–140 (1981)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Fabrizio Frati
    • 1
  1. 1.Dipartimento di Informatica e AutomazioneUniversità di Roma Tre 

Personalised recommendations