Real-Time Microforce Sensors and High Speed Vision System for Insect Flight Control Analysis

  • Chauncey F. Graetzel
  • Steven N. Fry
  • Felix Beyeler
  • Yu Sun
  • Bradley J. Nelson
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 39)


In this paper, we show how ”bio-inspired” robotics can benefit from a more generalized approach than case-by-case emulation. This generalization is obtained by investigating the design constraints found in biological organisms using a reverse-engineering approach. To achieve this, we have developed two novel technologies that are well suited to analyze the biomechanics and neural control in insect flight. First, we present a micro-electro-mechanical (MEMS) force sensor for measuring flight forces. Second, we describe a 6000Hz high speed vision system for characterizing wing kinematics in real time. Finally, we integrate these technologies within a tethered flight ”simulator” for open and closed-loop investigations of sensory-motor pathways. Initial results are presented and future research perspectives are discussed.


Force Sensor Wing Beat Lithographic Mask Wing Kinematic Classic Control Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sitti, M., Fearing, R.S.: Synthetic gecko foot-hair micro/nano-structures as dry adhesives. Journal of Adhesion Science and Technology 17(8), 1055–1073 (2003)CrossRefGoogle Scholar
  2. 2.
    Wu, W.-C., Schenato, L., Wood, R.J., Fearing, R.S.: Biomimetic sensor suite for flight control of a micromechanical flying insect: design and experimental results. In: ICRA. IEEE International Conference on Robotics and Automation, Taipei, Taiwan, pp. 1146–1151 (2003)Google Scholar
  3. 3.
    Dickinson, M.H., Götz, K.G.: The wake dynamics and flight forces of the fruit fly Drosophila melanogaster. Journal of Experimental Biology 199, 2085–2104 (1996)Google Scholar
  4. 4.
    Sun, Y., Nelson, B.J., Potasek, D.P., Enikov, E.: A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives. Journal of Micromechanics and Microengineering 12, 832–840 (2002)CrossRefGoogle Scholar
  5. 5.
    Fry, S.N., Sayaman, R., Dickinson, M.H.: The aerodynamics of hovering flight in Drosophila. Journal of Experimental Biology 208, 2303–2318 (2005)CrossRefGoogle Scholar
  6. 6.
    Zanker, J.M.: The wing beat of Drosophila melanogaster I. Kinematics. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 327, 1–18 (1990)CrossRefGoogle Scholar
  7. 7.
    Dickinson, M.H., Lehmann, F.-O., Götz, K.G.: The active control of wing rotation by Drosophila. Journal of Experimental Biology 182, 173–189 (1993)Google Scholar
  8. 8.
    Sun, Y., Fry, S.N., Potasek, D.P., Bell, D.J., Nelson, B.J.: Characterizing fruit fly flight behavior using a microforce sensor with a new comb-drive configuration. Journal of Microelectromechanical Systems 14, 4–11 (2005)CrossRefGoogle Scholar
  9. 9.
    Graetzel, C.F., Fry, S.N., Nelson, B.J.: A 6000 Hz computer vision system for real-time wing beat analysis of Drosophila. In: BioRob. The First IEEE / RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 1–6 (2006)Google Scholar
  10. 10.
    Oku, H., Ogawa, N., Ishikawa, M., Hashimoto, K.: Two-dimensional tracking of a motile micro-organism allowing high-resolution observation with various imaging techniques. Review of Scientific Instruments 76 (2005)Google Scholar
  11. 11.
    Wilburn, B., Joshi, N., Vaish, V., Talvala, E.V., Antunez, E., Barth, A., Adams, A., Horowitz, M., Levoy, M.: High performance imaging using large camera arrays. ACM Transactions on Graphics 24, 765–776 (2005)CrossRefGoogle Scholar
  12. 12.
    Juusola, M., Hardie, R.C.: Light adaptation in Drosophila photoreceptors: I. Response dynamics and signaling efficiency at 25 degrees C. Journal of General Physiology 117, 3–25 (2001)CrossRefGoogle Scholar
  13. 13.
    Reiser, M.B., Dickinson, M.H.: Modular electronics for rapid development of visual stimuli (in prep.)Google Scholar
  14. 14.
    Sane, S.P., Dickinson, M.H.: The aerodynamic effects of wing rotation and a revised quasi- steady model of flapping flight. Journal of Experimental Biology 205, 1087–1096 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Chauncey F. Graetzel
    • 1
    • 2
  • Steven N. Fry
    • 2
  • Felix Beyeler
    • 1
  • Yu Sun
    • 3
  • Bradley J. Nelson
    • 1
  1. 1.Institute of Robotics and Intelligent Systems, ETH Zurich, 8092 ZurichSwitzerland
  2. 2.Institute of Neuroinformatics, ETH/UNI Zurich, 8057 ZurichSwitzerland
  3. 3.Advanced Micro and Nanosystems LaboratoryUniversity of TorontoTorontoCanada

Personalised recommendations