Robot Navigation in Multi-terrain Outdoor Environments

  • Guilherme A. S. Pereira
  • Luciano C. A. Pimenta
  • Luiz Chaimowicz
  • Alexandre R. Fonseca
  • Daniel S. C. de Almeida
  • Leonardo de Q. Corrêa
  • Renato C. Mesquita
  • Mario F. M. Campos
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 39)

Summary

This paper presents a methodology for motion planning in outdoor environments that takes into account specific characteristics of the terrain. Instead of decomposing the robot configuration space into “free” and “occupied”, we consider the existence of several regions with different navigation costs. Costs are determined experimentally by navigating the robot through the regions and measuring the influence of the terrain on its motion. In this paper we measure the robot vertical acceleration, which reflects the terrain roughness. A path planning algorithm is used to determine a sequence of triangles that minimize the navigation cost. Robot control is accomplished by a piecewise continuous vector field that drives the robot through those regions. This vector field allows the robot velocity to change according to the characteristics of the terrain. Experimental results with a differential driven, all terrain mobile robot illustrate the proposed approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bastow, D., Howard, G.P.: Car Suspension and Handling. Pentech Press, London (1993)Google Scholar
  2. 2.
    Belta, C., Isler, V., Pappas, G.J.: Discrete abstractions for robot motion planning and control in polygonal environments. IEEE Transactions on Robotics 21(5), 864–874 (2005)CrossRefGoogle Scholar
  3. 3.
    Esposito, J.M., Kumar, V.: A method for modifying closed-loop motion plans to satisfy unpredictable dynamic constraints at runtime. In: IEEE International Conference on Robotics and Automation, pp. 1691–1696 (2002)Google Scholar
  4. 4.
    Fonseca, A.R., Pimenta, L.C.A., Mesquita, R.C., Saldanha, R.R., Pereira, G.A.S.: Path planning for mobile robots operating in outdoor environments using map overlay and triangular decomposition. In: Proceedings of the International Congress of Mechanical Engineering (COBEM 2005), Ouro Preto, Brazil (November 2005)Google Scholar
  5. 5.
    Gangnet, M., Hervé, J.-C., Pudet, T., van Thong, J.-M.: Incremental computation of planar maps. In: Proceedings of the 16th annual conference on Computer graphics and interactive techniques, pp. 345–354 (July 1989)Google Scholar
  6. 6.
    Guivant, J., Nebot, E., Nieto, J., Masson, F.: Navigation and mapping in large unstructured environments. The International Journal of Robotics Research 23(4-5), 449–472 (2004)CrossRefGoogle Scholar
  7. 7.
    Guo, Y., Parker, L.E., Jung, D., Dong, Z.: Performance-based rough terrain navigation for nonholonomic mobile robots. In: Proceedings of the IEEE Industrial Electronics Society, pp. 2811–2816 (2003)Google Scholar
  8. 8.
    Ida, N., Bastos, J.P.A.: Electromagnetics and Calculation of Fields. Springer, Heidelberg (1992)Google Scholar
  9. 9.
    Kobilarov, M.B., Sukhatme, G.S.: Near time-optimal constrained trajectory planning on outdoor terrain. In: Proceeding of the IEEE International Conference on Robotics and Automation, pp. 1833–1840 (2005)Google Scholar
  10. 10.
    Mitchell, J.S.B.: The weighted region problem: finding shortest paths through a weighted planar subdivision. Journal of the Association for Computing Machinery 38(1), 18–73 (1991)MATHMathSciNetGoogle Scholar
  11. 11.
    Sastry, S.: Nonlinear Systems: Analysis, Stability, and Control. Springer, Heidelberg (1999)MATHGoogle Scholar
  12. 12.
    Shewchuk, J.R.: Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In: Lin, M.C., Manocha, D. (eds.) FCRC-WS 1996 and WACG 1996. LNCS, vol. 1148, pp. 203–222. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  13. 13.
    Yahja, A., Singh, S., Stentz, A.: An efficient on-line path planner for outdoor mobile robots. Robotics and Autonomous Systems 32, 129–143 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Guilherme A. S. Pereira
    • 1
  • Luciano C. A. Pimenta
    • 2
  • Luiz Chaimowicz
    • 3
  • Alexandre R. Fonseca
    • 2
  • Daniel S. C. de Almeida
    • 3
  • Leonardo de Q. Corrêa
    • 2
  • Renato C. Mesquita
    • 1
  • Mario F. M. Campos
    • 3
  1. 1.Departamento de Engenharia ElétricaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Programa de Pós-Graduação em Engenharia ElétricaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Departamento de Ciência da ComputaçãoUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations