Advertisement

Motion Planning for Robotic Manipulation of Deformable Linear Objects

  • Mitul Saha
  • Pekka Isto
  • Jean-Claude Latombe
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 39)

Summary

A new motion planner is described to manipulate deformable linear objects (DLOs) and tie knots (both self-knots and knots around static objects) using two cooperating robotic arms. This planner blends new ideas with pre-existing concepts and techniques from knot theory, motion planning, and computational modeling. Unlike in traditional motion planning, the planner’s goal is a topological state of the DLO rather than some exact geometry. Using an input physical model of the DLO, it searches for a maniplation path by constructing a topologically-biased probabilistic roadmap in the configuration space of the DLO. Static needles are inserted to ensure the integrity of loops of the DLO during manipulation and to make plans robust to imperfections in the physical model. The planner was tested both in simulation and on a dual-PUMA-560 hardware platform to achieve various knots, like bowline, neck-tie, bow (shoe-lace), and stun-sail.

Keywords

Motion Planning Goal State Topological State Rigid Object Motion Planner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, C.C.: The Knot Book. W.H. Freeman and Comp., New York (1994)zbMATHGoogle Scholar
  2. 2.
    Brown, J., Latombe, J.C., Montgomery, K.: Real-time knot tying simulation. The Visual Computer J. 20(2-3), 165–179 (2004)CrossRefGoogle Scholar
  3. 3.
    Dhanik, A.: Development of a palpable virtual nylon thread and handling of bifurcations, Masters Thesis, NUS, Singapore (2005)Google Scholar
  4. 4.
    Alami, R., Siméon, T., Laumond, J.P.: A geometrical approach to planning manipulation tasks. In: Proc. Int. Symp. on Robotics Res., pp. 113–119 (1989)Google Scholar
  5. 5.
    Ladd, A.M., Kavraki, L.: Using motion planning for knot untangling. Int. J. Robotics Res. 23(7-8), 797–808 (2004)CrossRefGoogle Scholar
  6. 6.
    Lamiraux, F., Kavraki, L.: Planning paths for elastic objects under manipulation constraints. Int. J. Robotics Res. 20(3), 188–208 (2001)CrossRefGoogle Scholar
  7. 7.
    Koga, Y., Latombe, J.C.: On multi-arm manipulation planning. In: Proc. IEEE Int. Conf. Robotics and Aut., San Diego, CA (1994)Google Scholar
  8. 8.
    Kavraki, L., et al.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. on Rob. and Aut. 12, 566–580 (1996)CrossRefGoogle Scholar
  9. 9.
    Matsuno, T., et al.: Flexible rope manipulation by dual manipulator system using vision sensor. In: Proc. IEEE Int. Conf. Adv. Intel. Mech., Italy (2001)Google Scholar
  10. 10.
    Morita, T., et al.: Knot planning from observation. In: Proc. IEEE Int. Conf. Robotics and Aut., Taiwan (2003)Google Scholar
  11. 11.
    Pai, D.K.: Strands: interactive simulation of thin solids using cosserat models. In: Proc. Eurographics, Saarbruken, Germany (2002)Google Scholar
  12. 12.
    Remde, A., Henrich, D., Worn, H.: Pick-up deformable linear objects with industrial robots. In: Proc. Int. Symp. on Robotics, Japan (1999)Google Scholar
  13. 13.
    Saha, M.: Motion Planning with Probabilistic Roadmaps, Ph.D. Thesis, Department of Mechanical Engineering (2006)Google Scholar
  14. 14.
    Sanchez, G., Latombe, J.C.: A single-query bi-directional probabilistic roadmap planner with lazy collision checking. In: Proc. Int. Symp. on Robotics Research, Australia (2001)Google Scholar
  15. 15.
    Schmidt, T.W., Henrich, D.: Manipulating deformable linear objects: robot motions in single and multiple contact points. In: Proc. Int. Symp. on Assembly and Task Planning, Japan (2001)Google Scholar
  16. 16.
    Siméon, T., et al.: Manipulation planning with probabilistic roadmaps. Int. J. Robotics Res. 23(7-8), 729–746 (2004)CrossRefGoogle Scholar
  17. 17.
    Wakamatsu, H., Hirai, S.: Static modeling of linear object deformable based on differential geometry. Int. J. Robotics Res. 23(3), 293–311 (2004)CrossRefGoogle Scholar
  18. 18.
    Wakamatsu, H., et al.: Planning of one-handed knotting/raveling manipulation of linear objects. In: Proc. IEEE Int. Conf. Robotics and Aut., Los Angeles (2004)Google Scholar
  19. 19.
    Wilfong, G.: Motion planning in the presence of movable obstacles. In: Proc. ACM Symp on Computational Geometry, Urbana-Champaign, IL (1988)Google Scholar
  20. 20.
    Wang, F., et al.: Knot-tying with visual and force feedback for VR laparoscopic training. In: Proc. 27th IEEE EMBS Annual Int. Conf., Shanghai, China (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mitul Saha
    • 1
  • Pekka Isto
    • 2
  • Jean-Claude Latombe
    • 1
  1. 1.Artificial Intelligence LabStanford UniversityStanfordUSA
  2. 2.Computer Science DepartmentUniversity of VaasaFinland

Personalised recommendations