Efficient Infinite Elements based on Jacobi Polynomials

  • Otto von Estorff
  • Steffen Petersen
  • Daniel Dreyer

Abstract

In this contribution an optimized version of the so–called mapped wave envelope elements, also known as Astley–Leis elements, is presented and its practical usability is assessed. The elements are based on Jacobi polynomials in the direction of radiation, which leads to a low conditioning of the resulting system matrices and to a superior performance in conjunction with iterative solvers. This is shown for practically relevant simulations in the frequency as well as in the time domain.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Astley RJ (1996) Transient wave–envelope elements for wave problems. Journal of Sound and Vibration 192:245–261CrossRefADSGoogle Scholar
  2. 2.
    Astley RJ (2000) Infinite element formulations for wave problems: a review of current formulations and an assessment of accuracy. International Journal for Numerical Methods in Engineering 49:951–976MATHCrossRefGoogle Scholar
  3. 3.
    Astley RJ, Coyette JP (2001) Conditioning of infinite element schemes for wave problems. Communications in Numerical Methods in Engineering 17:31–41MATHCrossRefGoogle Scholar
  4. 4.
    Astley RJ, Coyette JP (2001) The performance of spheroidal infinite elements. International Journal for Numerical Methods in Engineering 52:951–976CrossRefGoogle Scholar
  5. 5.
    Astley RJ, Coyette JP, Cremers L (1998) Three–dimensional wave–envelope elements of variable order for acoustic radiation and scattering Part II. Formulation in the time domain. Journal of the Acoustical Society of America 103:64–72CrossRefADSGoogle Scholar
  6. 6.
    Astley RJ, Hamilton JA (2000) Numerical studies of conjugated infinite elements for acoustic radiation. Journal of Computational Acoustics 8:1–24MathSciNetGoogle Scholar
  7. 7.
    Astley RJ, Hamilton JA (2006) The stability of infinite element schemes for transient wave problems. Computer Methods in Applied Mechanics and Engineering 195:3553–3571MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Astley RJ, Macaulay GJ, Coyette JP (1994) Mapped wave envelope elements for acoustic radiation and scattering. Journal of Sound and Vibration 170:97–118MATHCrossRefADSGoogle Scholar
  9. 9.
    Astley RJ, Macaulay GJ, Coyette JP Cremers L (1998) Three–dimensional wave–envelope elements of variable order for acoustic radiation and scattering Part I. Formulation in the frequency domain. Journal of the Acoustical Society of America 103:49–63CrossRefADSGoogle Scholar
  10. 10.
    Balay S, Buschelman K, Gropp WD, Kaushik D, Knepley M, McInnes LC, Smith BF, Zhang H (2004) PETSc users manual (Portable, Extensible Toolkit for Scientific Computation). Technical Report ANL–95/11 – Revision 2.1.5, Argonne National LaboratoryGoogle Scholar
  11. 11.
    Barrett R, Berry M, Chan TF, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C, Van der Vorst H (1994) Templates for the solution of linear systems: Building blocks for iterative methods. SIAM, Philadelphia, 2. editionGoogle Scholar
  12. 12.
    Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New YorkMATHGoogle Scholar
  13. 13.
    Benzi M (2002) Preconditioning techniques for large linear systems: A survey. Journal of Computational Physics 182:418–477MATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Bérenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics 114:185–200MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Bettess P (1977) Infinite elements. International Journal for Numerical Methods in Engineering 11:53–64MATHCrossRefADSGoogle Scholar
  16. 16.
    Bettess P (1992) Infinite elements. Penshaw Press, SunderlandGoogle Scholar
  17. 17.
    Bettess P, Zienkiewicz OC (1977) Diffraction and refraction of surface waves using finite and infinite elements. International Journal for Numerical Methods in Engineering 11:1271–1290MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Brinkmeier M, Nackenhorst U, Petersen S, Estorff O von (2007) A numerical model for the simulation of tire rolling noise. Journal of Sound and Vibration, accepted for publicationGoogle Scholar
  19. 19.
    Burnett DS (1994) A 3–d acoustic infinite element based on a prolate spheroidal multipole expansion. Journal of the Acoustical Society of America 96:2798–2816CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Burnett DS, Holford RL (1998) An ellipsoidal acoustic infinite element. Computer Methods in Applied Mechanics and Engineering 164:49–76MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Burnett DS, Holford (1998) Prolate and oblate spheroidal acoustic infinite elements. Computer Methods in Applied Mechanics and Engineering 158:117–141MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Cipolla J (2002) Acoustic infinite elements with improved robustness. In: Sas P, Van Hal B (eds) Proceedings of ISMA 2002, Katholieke Universiteit Leuven, 2181–2187Google Scholar
  23. 23.
    Coyette JP, Meerbergen K, Robbé M (2005) Time integration for spherical acoustic finite–infinite element models. International Journal for Numerical Methods in Engineering 64:1752–1768MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Demkowicz L, Gerdes K (1998) Convergence of the infinite element methods for the Helmholtz equation in separable domains. Numerische Mathematik 79:11–42MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Dreyer D (2004) Efficient infinite elements for exterior acoustics. PhD Thesis, Technical University of Hamburg–HarburgGoogle Scholar
  26. 26.
    Dreyer D, Petersen S, Estorff O von (2006) Effectiveness and robustness of improved infinite elements for exterior acoustics. Computer Methods in Applied Mechanics and Engineering 195:3591–3607MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Dreyer D, Estorff O von (2003) Improved conditioning of infinite elements for exterior acoustics. International Journal for Numerical Methods in Engineering 58:933–953MATHCrossRefGoogle Scholar
  28. 28.
    Estorff O von (2003) Efforts to reduce computation time in numerical acoustics – an overview. Acta Acustica united with Acustica 89:1–13Google Scholar
  29. 29.
    Freund RW (1993) A transpose–free quasi–minimal residual algorithm for non–hermitian linear systems. SIAM Journal on Scientific Computing 14:470–482MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Freund RW, Nachtigal NM (1991) QMR: a quasi–minimal residual method for non–hermitian linear systems. Numerische Mathematik 60:315–339MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Gerdes K (1998) The conjugate vs. the unconjugate infinite element method for the Helmholtz equation in exterior domains. Computer Methods in Applied Mechanics and Engineering 152:125–145MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Gerdes K (2000) A review of infinite element methods for exterior Helmholtz problems. Journal of Computational Acoustics 8:43–62MathSciNetGoogle Scholar
  33. 33.
    Gerdes K, Demkowicz L (1996) Solution of 3d–Laplace and Helmholtz equation in exterior domains using hp–infinite elements. Computer Methods in Applied Mechanics and Engineering 137:239–273MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Givoli D (2004) High–order local non–reflecting boundary conditions: a review. Wave Motion 39:319–326MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Grote MJ, Keller JB (1995) On nonreflecting boundary conditions. Journal of Computational Physics 122:231–243MATHCrossRefMathSciNetADSGoogle Scholar
  36. 36.
    Guddati MN, Lim KW (2006) Continued fraction absorbing boundary conditions for convex polygonal domains. International Journal for Numerical Methods in Engineering 66:949–977MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Harari I (2006) A survey of finite element methods for time–harmonic acoustics. Computer Methods in Applied Mechanics and Engineering 195:1594–1607MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Harari I, Slavutin M, Turkel E (2006) Studies of FE/PML for exterior problems of time–harmonic elastic waves. Computer Methods in Applied Mechanics and Engineering 195:3854–3879MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Ihlenburg F (1998) Finite element analysis of acoustic scattering. Springer–Verlag, New YorkMATHCrossRefGoogle Scholar
  40. 40.
    Ihlenburg F (2000) On fundamental aspects of exterior approximations with infinite elements. Journal of Computational Acoustics 8:63–80MathSciNetGoogle Scholar
  41. 41.
    Keller JB, Givoli D (1989) Exact non–reflecting boundary conditions. Journal of Computational Physics 82:172–192MATHCrossRefADSMathSciNetGoogle Scholar
  42. 42.
    Kirk BS, Peterson JW, Stogner RH, Carey GF (2006) libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Engineering with Computers 22:237–254CrossRefGoogle Scholar
  43. 43.
    Leis R (1986) Initial boundary value problems in mathematical physics. Wiley & Teubner, StuttgartMATHGoogle Scholar
  44. 44.
    Magolu monga Made M (2001) Incomplete factorization–based preconditionings for solving the Helmholtz equation. International Journal for Numerical Methods in Engineering 50:1077–1101MATHCrossRefGoogle Scholar
  45. 45.
    Marques JMMC, Owen DRJ (1984) Infinite elements in quasi–static materially nonlinear problems. Computers & Structures 18:739–751CrossRefGoogle Scholar
  46. 46.
    Petersen S, Dreyer D, Estorff O von (2006) Assessment of finite and spectral element shape functions for efficient iterative simulations of interior acoustics. Computer Methods in Applied Mechanics and Engineering 195:6463–6478MATHCrossRefGoogle Scholar
  47. 47.
    Saad Y (2003) Iterative methods for sparse linear systems. SIAM, Philadelphia, 2nd editionMATHGoogle Scholar
  48. 48.
    Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing 7:856–869MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Shirron JJ, Babuška I (1998) A comparison of approximate boundary conditions and infinite element methods for exterior Helmholtz problems. Computer Methods in Applied Mechanics and Engineering 164:121–139MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Shirron JJ, Dey S (2002) Acoustic infinite elements for non–separable geometries. Computer Methods in Applied Mechanics and Engineering 191:4123–4139CrossRefMATHGoogle Scholar
  51. 51.
    Shirron JJ, Giddings TE (2006) A finite element model for acoustic scattering from objects near a fluid–fluid interface. Computer Methods in Applied Mechanics and Engineering 195:279–288CrossRefMathSciNetGoogle Scholar
  52. 52.
    Thompson LL, (2006) A review of finite–element methods for time–harmonic acoustics. Journal of the Acoustical Society of America 119:1315–1330CrossRefADSGoogle Scholar
  53. 53.
    Trefethen LN, Bau D (1997) Numerical linear algebra. SIAM, PhiladelphiaMATHGoogle Scholar
  54. 54.
    Turkel E, Yefet A (1998) Absorbing PML boundary layers for wave–like equations. Applied Numerical Mathematics 27:533–557MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Van den Nieuwenhof B, Coyette JP (2001) Treatment of frequency–dependent admittance boundary conditions in transient acoustic finite/infinite–element models. Journal of the Acoustical Society of America 110:1743–1751CrossRefADSGoogle Scholar
  56. 56.
    Van der Vorst HA (1992) Bi–CGSTAB: a fast and smoothly converging variant of Bi–CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing 13:631–644MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Otto von Estorff
    • 1
  • Steffen Petersen
    • 2
  • Daniel Dreyer
    • 3
  1. 1.Institute of Modelling and ComputationHamburg University of TechnologyHamburgGermany
  2. 2.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  3. 3.Hanse Wohnbau GmbHNorderstedtGermany

Personalised recommendations