Skip to main content

On Optimal Probabilistic Asynchronous Byzantine Agreement

  • Conference paper
Book cover Distributed Computing and Networking (ICDCN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4904))

Included in the following conference series:

  • 688 Accesses

Abstract

An important problem in the fault tolerant distributed systems is reaching a consensus among a set of non faulty processes, even in the presence of some corrupted processes. The problem is couched in terms of generals attempting to decide on a common plan of attack. This is in fact the well known Byzantine Generals Problem. We present a consensus protocol of O(ln) communication complexity in asynchronous networks (there is no common global clock and message delivery time is indefinite) with a small error probability where n is the number of players and l is the length of message, given l is sufficiently large, such that l ≥ n 3. This improves the previous result with O(ln 2) communication complexity[5]. Further more, we have proposed a reliable broadcast protocol in asynchronous networks with the assumption that messages delivery time is finite. Both of our protocols can tolerate up to \(t < \frac{n}{3}\) corrupted players and is computationally secure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Or, C.M.: Another Advantage of Free Choice: Completely Asynchronous Agreement Protocols. In: PODC 1983. Proc. Second ACM Symp. Principles of Distributed Computing, pp. 27–30 (1983)

    Google Scholar 

  2. Berman, P., Garay, J.A.: Randomized distributed agreement revisited. In: 23th International Symposium on Fault-Tolerant Computing (FTCS-23), pp. 412–413 (1993)

    Google Scholar 

  3. Bracha, G.: An asynchronous [(n − 1)/3]-resilient consensus protocol. In: PODC. Proc. 3rd ACM Symposium on Principles of Distributed Computing, pp. 154–162 (1984)

    Google Scholar 

  4. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous broadcast protocols (extended abstract). In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–541. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinople: Practical asynchronous Byzantine agreement using cryptography. Journal of Cryptology 18(3), 219–246 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Carter, L., Wegman, M.N.: Universal classes of hash functions. Journal of Computing and system sciences (JCSS) 18(4), 143–154 (1979) (Preliminary version appeared in STOC 1977)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chandra, T.D., Toueg, S.: Unreliable Failure Detectors for Reliable Distributed Systems. J. ACM 43(2), 225–267 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Desmedt, Y., Kurosawa, K.: A Generalization and a Variant of Two Threshold Cryptosystems Based on Factoring. In: ISC 2007. Proceedings of 10th International Conference, vol. 4779, pp. 351–361. Springer, Heidelberg (2007)

    Google Scholar 

  9. Fischer, C.M.J., Lynch, N., Paterson, M.S.: Impossibility of Distributed Consensus with One Faulty Process. J. ACM 32(2), 374–382 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fitzi, M., Hirt, M.: Optimally efficient multi-valued byzantine agreement. In: PODC 2006. Proceedings of the 25th annual ACM symposium on Principles of distributed computing, Denver, Colorado, USA (July 23 - 26, 2006)

    Google Scholar 

  11. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. Journal of the ACM 27(2), 228–234 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  12. Rabin, C.M.: Randomized Byzantine Generals. In: FOCS 1983. Proc. 24th IEEE Symp. Foundations of Computer Science, pp. 403–409 (1983)

    Google Scholar 

  13. Ramasamy, C.H.V., Cachin, C.: Parsimonious asynchronous Byzantine-fault-tolerant atomic broadcast. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shrisha Rao Mainak Chatterjee Prasad Jayanti C. Siva Ram Murthy Sanjoy Kumar Saha

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shareef, A., Rangan, C.P. (2007). On Optimal Probabilistic Asynchronous Byzantine Agreement. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds) Distributed Computing and Networking. ICDCN 2008. Lecture Notes in Computer Science, vol 4904. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77444-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77444-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77443-3

  • Online ISBN: 978-3-540-77444-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics