Proving Distributed Algorithms for Mobile Agents: Examples of Spanning Tree Computation in Anonymous Networks

  • M. A. Haddar
  • A. Hadj Kacem
  • Y. Métivier
  • M. Mosbah
  • M. Jmaiel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4904)

Abstract

This paper present a framework for describing distributed algorithms for mobile agents in an anonymous network. We make use of the high level encoding of these algorithms as transitions rules. The main advantage of this uniform and formal approach is the proof correctness of the distributed algorithms. We illustrate this approach by giving examples of distributed computations of a spanning tree by mobile agents in anonymous network.

Keywords

mobile agents spanning tree distributed algorithms proofs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Litovsky, I., Métivier, Y., Sopena, E.: Handbook of graph grammars and computing by graph transformation, vol. 3, pp. 1–56. World Scientific, Singapore (1999)Google Scholar
  2. 2.
    Shiao, D.: Mobile agents: A new model of intelligent distributed computing. Technical report, IBM DeveloperWorks, China (2004)Google Scholar
  3. 3.
    Angluin, D.: Local and global properties in networks of processors (extended abstract). In: STOC 1980: Proceedings of the twelfth annual ACM symposium on Theory of computing, pp. 82–93. ACM Press, New York (1980)CrossRefGoogle Scholar
  4. 4.
    Derbel, B., Mosbah, M.: Distributed graph traversals by relabeling systems with applications. In: Workshop on Graph Transformation for Verification and Concurrency, San Francisco, California, USA. ENTCS, pp. 79–94 ( August 2005)Google Scholar
  5. 5.
    Chalopin, J., Métivier, Y.: Election and local computations on edges. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 90–104. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Chalopin, J., Godard, E., Métivier, Y., Ossamy, R.B.: Mobile agent algorithms versus message passing algorithms. In: Shvartsman, A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 187–201. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Haddar, M.A., Kacem, A.H., Mosbah, M., Métivier, Y., Jmaiel, M.: Distributed algorithms for mobile agents. Technical Report RR-1435-07, Université Bordeaux1 (2007)Google Scholar
  8. 8.
    Chalopin, J., Métivier, Y., Zielonka, W.: Election, naming and cellular edge local computations. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 242–256. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Szymanski, B.K., Shi, Y., Prywes, N.S.: Terminating iterative solution of simultaneous equations in distributed message passing systems. In: PODC 1985: Proceedings of the fourth annual ACM symposium on Principles of distributed computing, pp. 287–292. ACM Press, New York (1985)CrossRefGoogle Scholar
  10. 10.
    Bauderon, M., Gruner, S., Metivier, Y., Mosbah, M., Sellami, A.: Visualization of distributed algorithms based on graph relabelling systems. ENTCS 50(3), 227–237 (2001)CrossRefGoogle Scholar
  11. 11.
    Santoro, N.: Design and Analysis of Distributed Algorithms (Wiley Series on Parallel and Distributed Computing). Wiley-Interscience, Chichester (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • M. A. Haddar
    • 1
    • 3
  • A. Hadj Kacem
    • 2
  • Y. Métivier
    • 3
  • M. Mosbah
    • 3
  • M. Jmaiel
    • 1
  1. 1.ReDCAD Research UnitÉcole Nationale d’Ingénieurs de SfaxTunisie 
  2. 2.MIRACL LaboratoryFaculté des Sciences Economiques et de Gestion de SfaxTunisie 
  3. 3.LaBRI UMR 5800ENSEIRB - Université Bordeaux 1, 351 Cours de la LibérationTalenceFrance

Personalised recommendations