‘Oh Web Image, Where Art Thou?’

  • Dirk Ahlers
  • Susanne Boll
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4903)

Abstract

Web image search today is mostly keyword-based and explores the content surrounding the image. Searching for images related to a certain location quickly shows that Web images typically do not reveal their explicit relation to an actual geographic position. The geographic semantics of Web images are either not available at all or hidden somewhere within the the Web pages’ content. Our spatial search engine crawls and identifies Web pages with a spatial relationship. Analysing location-related Web pages, we identify photographs based on content-based image analysis as well as image context. Following the photograph classification, a location-relevance classification process evaluates image context and content against the previously identified address. The results of our experiments show that our approach is a viable method for Web image location assessment. Thus, a large number of potentially geographically-related Web images are unlocked for commercially relevant spatial Web image search.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlers, D., Boll, S.: Geospatially Focused Web Crawling. Datenbankspektrum, Special Issue Focused Search (Fokussierte Suche) (2007)Google Scholar
  2. 2.
    Ahlers, D., Boll, S.: Location-based Web search. In: Scharl, A., Tochtermann, K. (eds.) The Geospatial Web, Springer, London (2007)Google Scholar
  3. 3.
    Athitsos, V., Swain, M.J., Frankel, C.: Distinguishing photographs and graphics on the World Wide Web. In: CAIVL 1997: Proceedings of the 1997 Workshop on Content-Based Access of Image and Video Libraries, p. 10. IEEE Computer Society, Los Alamitos (1997)CrossRefGoogle Scholar
  4. 4.
    Baldzer, J., Boll, S., Klante, P., Krösche, J., Meyer, J., Rump, N., Scherp, A., Appelrath, H.-J.: Location-Aware Mobile Multimedia Applications on the Niccimon Platform. In: IMA 2004 (2004)Google Scholar
  5. 5.
    Frankel, C., Swain, M.J., Athitsos, V.: WebSeer: An Image Search Engine for the World Wide Web. Technical report, Chicago, IL, USA (1996)Google Scholar
  6. 6.
    Gao, W., Lee, H.C., Miao, Y.: Geographically focused collaborative crawling. In: WWW 2006: Proc. of the 15th Intl. Conf. on World Wide Web, pp. 287–296. ACM Press, New York (2006)CrossRefGoogle Scholar
  7. 7.
    Gong, Z., U, L.H., Cheang, C.W.: Web image semantic clustering. In: Meersman, R., Tari, Z. (eds.) On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE. LNCS, vol. 3761, pp. 1416–1431. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Gräf, J., Henrich, A., Lüdecke, V., Schlieder, C.: Geografisches Information Retrieval. Datenbank-Spektrum 6(18), 48–56 (2006)Google Scholar
  9. 9.
    He, X., Caia, D., Wen, J.-R., Ma, W.-Y., Zhang, H.-J.: Clustering and searching WWW images using link and page layout analysis. ACM Trans. on Multimedia Comput. Commun. Appl. 3 (2007)Google Scholar
  10. 10.
    Kamvar, M., Baluja, S.: A large scale study of wireless search behavior: Google mobile search. In: CHI ’06: Proc. of the SIGCHI conf. on Human Factors in computing systems, pp. 701–709. ACM Press, New York (2006)CrossRefGoogle Scholar
  11. 11.
    Kherfi, M.L., Ziou, D., Bernardi, A.: Image retrieval from the world wide web: Issues, techniques, and systems. ACM Comput. Surv. 36(1), 35–67 (2004)CrossRefGoogle Scholar
  12. 12.
    Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information retrieval: State of the art and challenges. ACM Trans. Multimedia Comput. Commun. Appl. 2(1), 1–19 (2006)CrossRefGoogle Scholar
  13. 13.
    Maekawa, T., Hara, T., Nishio, S.: Image classification for mobile web browsing. In: WWW 2006: Proc.of the 15th Intl. Conf. on World Wide Web, pp. 43–52. ACM Press, New York (2006)CrossRefGoogle Scholar
  14. 14.
    Markowetz, A., Chen, Y.-Y., Suel, T., Long, X., Seeger, B.: Design and implementation of a geographic search engine. In: WebDB 2005, Baltimore (2005)Google Scholar
  15. 15.
    McCurley, K.S.: Geospatial mapping and navigation of the web. In: WWW 2001: Proc. of the 10th Intl. Conf. on World Wide Web, pp. 221–229. ACM Press, New York (2001)CrossRefGoogle Scholar
  16. 16.
    Nack, F., Putz, W.: Designing annotation before it’s needed. In: MULTIMEDIA 2001: Proceedings of the ninth ACM international conference on Multimedia, pp. 251–260. ACM Press, New York (2001)CrossRefGoogle Scholar
  17. 17.
    Niccimon. Competence center of lower saxony for information system for mobile usage (2006), http://www.niccimon.de/.
  18. 18.
    Sanderson, M., Kohler, J.: Analyzing geographic queries. In: Workshop on Geographic Information Retrieval SIGIR (2004)Google Scholar
  19. 19.
    Sandhaus, P., Scherp, A., Thieme, S., Boll, S.: Metaxa – context- and content-driven metadata enhancement for personal photo albums. Multimedia Modeling 2007, Singapore (2007)Google Scholar
  20. 20.
    Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  21. 21.
    Tollmar, K., Yeh, T., Darrell, T.: Ideixis - image-based deixis for finding location-based information. In: MobileHCI (2004)Google Scholar
  22. 22.
    Tsymbalenko, Y., Munson, E.V.: Using HTML Metadata to Find Relevant Images on the World Wide Web. In: Proceedings of Internet Computing 2001, Las Vegas, vol. 2, pp. 842–848. CSREA Press (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dirk Ahlers
    • 1
  • Susanne Boll
    • 2
  1. 1.OFFIS Institute for Information Technology, OldenburgGermany
  2. 2.University of OldenburgGermany

Personalised recommendations