Advertisement

Remarks on a Sequence of Minimal Niven Numbers

  • H. Fredricksen
  • E. J. Ionascu
  • F. Luca
  • P. Stănică
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4893)

Abstract

In this short note we introduce two new sequences defined using the sum of digits in the representation of an integer in a certain base. A connection to Niven numbers is proposed and some results are proven.

Keywords

sum of digits sequences Niven numbers 

Mathematics Subject Classification

11A07 11B75 11L20 11N25 11N37 11Y55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cai, T.: On 2-Niven numbers and 3-Niven numbers. Fibonacci Quart. 34, 118–120 (1996)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Cooper, C.N., Kennedy, R.E.: On consecutive Niven numbers. Fibonacci Quart. 21, 146–151 (1993)MathSciNetGoogle Scholar
  3. 3.
    De Koninck, J.M., Doyon, N.: On the number of Niven numbers up to x. Fibonacci Quart. 41(5), 431–440 (2003)MathSciNetzbMATHGoogle Scholar
  4. 4.
    De Koninck, J.M., Doyon, N., Katai, I.: On the counting function for the Niven numbers. Acta Arith. 106, 265–275 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Grundman, H.G.: Sequences of consecutive Niven numbers. Fibonacci Quart. 32, 174–175 (1994)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Fredricksen, H., Ionascu, E.J., Luca, F., Stanica, P.: Minimal Niven numbers (I), submitted (2007)Google Scholar
  7. 7.
    Mauduit, C., Pomerance, C., Sárközy, A.: On the distribution in residue classes of integers with a fixed digit sum. The Ramanujan J. 9, 45–62 (2005)zbMATHCrossRefGoogle Scholar
  8. 8.
    Mauduit, C., Sárközy, A.: On the arithmetic structure of integers whose sum of digits is fixed. Acta Arith. 81, 145–173 (1997)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Rosen, K.H.: Elementary Number Theory, 5th edn. (2005)Google Scholar
  10. 10.
    Vardi, I.: Niven numbers. Computational Recreations in Mathematics, 19, 28–31 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • H. Fredricksen
    • 1
  • E. J. Ionascu
    • 2
  • F. Luca
    • 3
  • P. Stănică
    • 1
  1. 1.Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943USA
  2. 2.Department of Mathematics, Columbus State University, Columbus, GA 31907USA
  3. 3.Instituto de Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089, Morelia, MichoacánMéxico

Personalised recommendations