Combining Tardos Fingerprinting Codes and Fingercasting

  • Stefan Katzenbeisser
  • Boris Škorić
  • Mehmet U. Celik
  • Ahmad-Reza Sadeghi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4567)

Abstract

Forensic tracking faces new challenges when employed in mass-scale electronic content distribution. In order to avoid a high load at the server, the watermark embedding process should be shifted from the secure server to the client side, where (1) the security of the watermark secrets must be ensured, and (2) collusion-resistance against a reasonably sized coalition of malicious users needs to be guaranteed. The combination of secure content broadcasting, secure embedding and collusion tolerance aspects has been recently addressed and termed as Fingercasting. However, the proposed solution does not apply a special collusion-resistant code, but derives a limited resistance against collusion attacks from the underlying spread spectrum watermark. In this paper, we make the first step towards tackling this problem: we propose a construction that provides collusion-resistance against a large coalition in a secure watermark embedding setting. In particular, we propose to incorporate a variant of the collusion resistant random code of Tardos, currently the code with best asymptotic behavior, into a Fingercasting framework. Through statistical analysis we show that the combination is feasible for a small subset of possible Fingercasting system parameters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adelsbach, A., Huber, U., Sadeghi, A.-R.: Fingercasting—joint fingerprinting and decryption of broadcast messages. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 136–147. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Anderson, R.J., Manifavas, C.: Chameleon—a new kind of stream cipher. In: FSE 1997. Proceedings of the 4th International Workshop on Fast Software Encryption, London, UK, pp. 107–113. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Transactions on Information Theory 44(5), 1897–1905 (1998)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Celik, M., Lemma, A., Katzenbeisser, S., Veen, M.v.d.: Secure embedding of spread-spectrum watermarks using look-up tables. In: ICASSP 2007. International Conference on Acoustics, Speech and Signal Processing, IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  5. 5.
    Crowcroft, J., Perkins, C., Brown, I.: A method and apparatus for generating multiple watermarked copies of an information signal. WO Patent 00/56059 (2000)Google Scholar
  6. 6.
    Emmanuel, S., Kankanhalli, M.S.: Copyright protection for MPEG-2 compressed broadcast video. In: IEEE International Conference on Multimedia and Expo (ICME 2001), pp. 206–209 (2001)Google Scholar
  7. 7.
    Hollmann, H.D.L., van Lint, J.H., Linnartz, J.-P., Tolhuizen, L.M.G.M.: On codes with the identifiable parent property. Journal of Combinatorial Theory 82, 472–479 (1998)MathSciNetMATHGoogle Scholar
  8. 8.
    Kundur, D.: Video fingerprinting and encryption principles for digital rights management. Proceedings of the IEEE 92(6), 918–932 (2004)CrossRefGoogle Scholar
  9. 9.
    Lemma, A., Katzenbeisser, S., Celik, M., van der Veen, M.: Secure watermark embedding through partial encryption. In: Shi, Y.Q., Jeon, B. (eds.) IWDW 2006. LNCS, vol. 4283, pp. 433–445. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Parviainen, R., Parnes, P.: Large scale distributed watermarking of multicast media through encryption. In: Proceedings of the International Federation for Information Processing, Communications and Multimedia Security Joint working conference IFIP TC6 and TC11, pp. 149–158 (2001)Google Scholar
  11. 11.
    Peikert, C., Shelat, A., Smith, A.: Lower bounds for collusion-secure fingerprinting. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 472–478 (2003)Google Scholar
  12. 12.
    Škorić, B., Vladimirova, T.U., Celik, M., Talstra, J.C.: Tardos fingerprinting is better than we thought. Technical report, arXiv repository, cs.CR/0607131 (2006), http://www.arxiv.org/abs/cs.CR/0607131
  13. 13.
    Tardos, G.: Optimal probabilistic fingerprint codes. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC), pp. 116–125 (2003)Google Scholar
  14. 14.
    Škorić, B., Katzenbeisser, S., Celik, M.U.: Symmetric tardos fingerprinting codes for arbitrary alphabet sizes. Cryptology ePrint Archive, Report 2007/041 (2007), http://eprint.iacr.org/2007/041

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Stefan Katzenbeisser
    • 1
  • Boris Škorić
    • 1
  • Mehmet U. Celik
    • 1
  • Ahmad-Reza Sadeghi
    • 2
  1. 1.Philips Research EuropeInformation and System Security GroupThe Netherlands
  2. 2.Horst Görtz Institute for IT SecurityRuhr-Universität BochumGermany

Personalised recommendations