Quantitative Perceptual Separation of Two Kinds of Degradation in Speech Denoising Applications

  • Anis Ben Aicha
  • Sofia Ben Jebara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4885)


Classical objective criteria evaluate speech quality using one quantity which embed all possible kinds of degradation. For speech denoising applications, there is a great need to determine with accuracy the kind of the degradation (residual background noise, speech distortion or both). In this work, we propose two perceptual bounds UBPE and LBPE defining regions where original and denoised signals are perceptually equivalent or different. Next, two quantitative criteria PSANR and PSADR are developed to quantify separately the two kinds of degradation. Some simulation results for speech denoising using different approaches show the usefulness of proposed criteria.


Objective criteria speech denoising UBPE LBPE PSANR PSADR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Recommandation UIT-T P.800. Méthodes d’évaluation subjective de la qualité de transmission (1996)Google Scholar
  2. 2.
    Hansen, J.H.L., Pellom, B.L.: An effective quality evaluation protocol for speech enhancement algorithms. In: Int. Conf. on Spoken Language Processing ICSLP, Austria (1998)Google Scholar
  3. 3.
    Yang, W., Benbouchta, M., Yantorno, R.: Performance of the modified bark spectral distortion as an objective speech measure. In: ICASSP. Proc. Int. Conf. on Acoustics, Speech and Signal Processing, vol. 1, pp. 541–544 (1988)Google Scholar
  4. 4.
    Benaichaet, A., Ben Jebara, S.: Caractérisation perceptuelle de la dégradation apportée par les techniques de débruitage de la parole. Traitement et Analyse de l’Information Méthodes et Applications TAIMA, Tunisia (2007)Google Scholar
  5. 5.
    Lim, J.S., Oppenheim, A.V.: Enhancement and Bandwidth Compression of Noisy Speech. In: Proc. IEEE, vol. 67, pp. 1586–1604 (1979)Google Scholar
  6. 6.
    Johnston, J.D.: Transform coding of audio signal using perceptual noise criteria. IEEE J. Select. Areas Commun. 6, 314–323 (1988)CrossRefGoogle Scholar
  7. 7.
    Tsoukalas, D.E., Mourjopoulos, J., Kokkinakis, G.: Speech enhancement based on audible noise suppression. IEEE Trans. Speech and Audio Processing 5(6), 497–514 (1997)CrossRefGoogle Scholar
  8. 8.
    Beruoti, M., Schwartz, R., Makhoul, J.: Enhancement of speech corrupted by acoustic noise. In: Proc. IEEE ICASSP, pp. 208–211 (1979)Google Scholar
  9. 9.
    Ephraim, Y., Malah, D.: Speech enhancement using a mean square error short-time spectral amplitude estimator. IEEE Trans. Acoust., Speech, Signal Processing 32, 1109–1121 (1984)CrossRefGoogle Scholar
  10. 10.
    Gustafsson, S., Jax, P., Vary, P.: A novel psychoacoustically motivated audio enhancement algorithm preserving backround noise characteristics. In: Proc. Int. Conf. Acoustics, Speech, and Signal Processing, Seattle, WA, pp. 397–400 (May 1998)Google Scholar
  11. 11.
    Ben Aicha, A., Ben Jebara, S., Pastor, D.: Speech denoising improvement by musical tones shape modification. In: ISCCSP. International Symposium on Communication, Control and Signal Processing, Morocco (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Anis Ben Aicha
    • 1
  • Sofia Ben Jebara
    • 1
  1. 1.Unité de recherche Techtra, Ecole Supérieure des Communications de Tunis, 2083 Cité El-Ghazala/ArianaTunisie

Personalised recommendations