An Extensible Modelling Framework for Timetabling Problems

  • David Ranson
  • Samad Ahmadi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3867)


Several modelling languages have been proposed to standardize the specification, solution and data format for timetabling problems. As of now these languages have not been adopted as standards and are seen as not simplifying the modelling process, lacking features and offering little advantage over traditional programming languages. In contrast to this approach we propose a new language-independent modelling framework for general timetabling problems based on past experience of modelling the examination timetabling problem. This framework is a work in progress but demonstrates the possibilities and convenience such a model would afford.


Modelling Language Class Diagram Soft Constraint Hard Constraint Constraint Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bixby, B., Reinelt, G.: TSPLIB a library of travelling salesman and related problem instances (1995),
  2. 2.
    Burke, E.K., Elliman, D.G., Ford, P.H., Weare, R.F.: Examination timetabling in British universities – a survey. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated Timetabling. LNCS, vol. 1153, pp. 76–90. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Burke, E. K., McCollum, B.: Examination timetabling: a new formulation (Abstract). In: Proceedings of the 6th International Conference on the Practice and Theory of Automated Timetabling, Brno, August (2006) 373–375Google Scholar
  4. 4.
    Burke, E.K., Petrovic, S.: Recent research directions in automated timetabling. European Journal of Operational Research 140, 266–280 (2002)zbMATHCrossRefGoogle Scholar
  5. 5.
    Burke, E.K., Kingston, J.H., Pepper, P.A.: A standard data format for timetabling instances. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 213–222. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Burke, E.K., de Werra, D., Kingston, J.: Applications to timetabling. In: Gross, J., Yellen, J. (eds.) The Handbook of Graph Theory, pp. 445–474. Chapman Hall/CRC Press, London (1997)Google Scholar
  7. 7.
    Carter, M.W.: A survey of practical applications of examination timetabling algorithms. Operations Research 34, 193–202 (1986)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Carter, M.W.: Timetabling. In: Gass, S., Harris, C.M. (eds.) Encyclopedia of Operations Research and Management Science, pp. 833–836. Kluwer, Dordrecht (2001)CrossRefGoogle Scholar
  9. 9.
    Dantzig, G.B., Eisenstat, S.C., Magnanti, T.L., Maier, S.F., McGrath, M.B.: The mathematical programming language (MPL). In: Proceedings of the 1971 26th Annual Conference, pp. 278–283. ACM Press, New York (1971)CrossRefGoogle Scholar
  10. 10.
    Kingston, J.H.: Modelling timetabling problems with STTL. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 309–321. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Kingston, J.H.: A user’s guide to the STTL timetabling language version 1.0.
  12. 12.
    Ozcan, E.: Towards an XML based standard for timetabling problems: TTML. In: MISTA 2003. Proceedings of the 1st Multidisciplinary International Conference on Scheduling: Theory and Applications, Nottingham, pp. 566–569 (August 2003)Google Scholar
  13. 13.
    Petrovic, S., Burke, E.K.: University timetabling. In: Leung, J. (ed.) Handbook of Scheduling: Algorithms, Models, and Performance Analysis, CRC Press, Boca Raton, FL (2004)Google Scholar
  14. 14.
    Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G., Lee, S.: A survey of search methodologies and automated approaches for examination timetabling. University of Nottingham, Computer Science Technical Report No. NOTTCS-TR-2006-4 (2006)Google Scholar
  15. 15.
    Ranson, D.: Extensible modelling framework for timetabling optimisation problem website.
  16. 16.
    Ranson, D., Cheng, P.C.H.: Graphical tools for heursitic visualization. In: MISTA. The 2nd Multidisciplinary International Conference on Scheduling: Theory and Applications, New York, pp. 658–668 (July 2005)Google Scholar
  17. 17.
    Reis, L.P., Oliveira, E.: A language for specifying complete timetabling problems. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 322–341. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Rudova, H., Murray, K.: University course timetabling with soft constraints. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 310–328. Springer, Heidelberg (2003)Google Scholar
  19. 19.
    Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13, 87–127 (1999)CrossRefGoogle Scholar
  20. 20.
    Smith, S., Becker, M.: An ontology for constructing scheduling systems. In: Working Notes from 1997 AAAI Spring Symposium on Ontological Engineering, Stanford, CA, AAAI Press, Menlo Park, CA (March 1997)Google Scholar
  21. 21.
    Wren, A.: Scheduling, timetabling and rostering – a special relationship? In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated Timetabling. LNCS, vol. 1153, pp. 46–75. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • David Ranson
    • 1
  • Samad Ahmadi
    • 2
  1. 1.Representational Systems Lab, Department of Informatics, University of Sussex, Falmer, BN1 9RHUK
  2. 2.School of Computing, De Montfort University, The Gateway, Leicester, LE1 9BHUK

Personalised recommendations