Hierarchical Timetable Construction

  • Jeffrey H. Kingston
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3867)


A hierarchical timetable is one made by recursively joining smaller timetables together into larger ones. Hierarchical timetables exhibit a desirable regularity of structure, at the cost of some limitation of choice in construction. This paper describes a method of specifying hierarchical timetables using mathematical operators, and introduces a data structure which supports the efficient and flexible construction of timetables specified in this way. The approach has been implemented in KTS, a web-based high school timetabling system created by the author.


Layer Tree Time Block Demand Node Timetabling Problem Supply Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adriaen, M., De Causmaecker, P., Demeester, P., Vanden Berghe, G.: Tackling the university course timetabling problem with an aggregation approach. In: Proceedings of the 6th International Conference on the Practice and Theory of Automated Timetabling, Brno, pp. 330–335 (August 2006)Google Scholar
  2. 2.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs, NJ (1993)Google Scholar
  3. 3.
    Apt, K.R.: Principles of Constraint Programming. Cambridge University Press, Cambridge (2003)Google Scholar
  4. 4.
    Burke, E.K., Carter, M. (eds.): PATAT 1997. LNCS, vol. 1408. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Burke, E.K., De Causmaecker, P. (eds.): PATAT 2002. LNCS, vol. 2740. Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Burke, E., Erben, W. (eds.): PATAT 2000. LNCS, vol. 2079. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  7. 7.
    Burke, E.K., Ross, P. (eds.): Practice and Theory of Automated Timetabling. LNCS, vol. 1153. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    Burke, E.K., Trick, M.A. (eds.): PATAT 2004. LNCS, vol. 3616. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Carter, M.W., Laporte, G.: Recent developments in practical course timetabling. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 3–19. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Cooper, T.B., Kingston, J.H.: The solution of real instances of the timetabling problem. The Computer Journal 36, 645–653 (1993)CrossRefGoogle Scholar
  11. 11.
    Fizzano, P., Swanson, S.: Scheduling classes on a college campus. Computational Optimization and Applications 16, 279–294 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    van Hoeve, W.J.: A hyper-arc consistency algorithm for the soft alldifferent constraint. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 679–689. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Kingston, J.H.: A tiling algorithm for high school timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 233–249. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Kingston, J.H.: The KTS high school timetabling web site (Version 1.3) (October 2005),
  15. 15.
    Kingston, J.H.: The KTS high school timetabling system. In: Burke, E.K., Rudová, H. (eds.) PATAT 2006. LNCS, vol. 3867, pp. 308–323. Springer, Heidelberg (2007)Google Scholar
  16. 16.
    Marte, M.: Towards constraint-based school timetabling. In: Proceedings of the Workshop on Modelling and Solving Problems with Constraints (at ICAI 2004), pp. 140–154 (2004)Google Scholar
  17. 17.
    Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press, Cambridge, MA (1999)Google Scholar
  18. 18.
    de Werra, D.: An introduction to timetabling. European Journal of Operational Research 19, 151–162 (1985)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jeffrey H. Kingston
    • 1
  1. 1.School of Information Technologies, The University of Sydney, NSW 2006Australia

Personalised recommendations