Advertisement

Skin Output in P Systems with Minimal Symport/Antiport and Two Membranes

  • Artiom Alhazov
  • Yurii Rogozhin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4860)

Abstract

It is known that symport/antiport P systems with two membranes and minimal cooperation can generate any recursively enumerable sets of natural numbers using exactly one superfluous object in the output membrane, where the output membrane is an elementary membrane. In this paper we consider symport/antiport P systems where the output membrane is the skin membrane. In this case we prove an unexpected characterization: symport/antiport P systems (and purely symport P systems) with two membranes and minimal cooperation generate exactly the recursively enumerable sets of natural numbers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Freund, R., Rogozhin, Y.: Computational Power of Symport/Antiport: History, Advances, and Open Problems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 1–30. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Alhazov, A., Freund, R., Rogozhin, Y.: Some Optimal Results on Communicative P Systems with Minimal Cooperation. In: [17], pp. 23–36Google Scholar
  3. 3.
    Alhazov, A., Margenstern, M., Rogozhin, V., Rogozhin, Y., Verlan, S.: Communicative P Systems with Minimal Cooperation. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 161–177. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Alhazov, A., Rogozhin, Y.: Minimal Cooperation in Symport/Antiport P Systems with One Membrane. In: [18], pp. 29–34Google Scholar
  5. 5.
    Alhazov, A., Rogozhin, Y.: Towards a Characterization of P Systems with Minimal Symport/Antiport and Two Membranes. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 135–153. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Alhazov, A., Rogozhin, Y.: Generating Languages by P Systems with Minimal Symport/Antiport. Computer Science Journal of Moldova 14, 3(42), 299–323 (2006)Google Scholar
  7. 7.
    Alhazov, A., Rogozhin, Y., Verlan, S.: Symport/Antiport Tissue P Systems with Minimal Cooperation. In: [17], pp. 37–52Google Scholar
  8. 8.
    Alhazov, A., Rogozhin, Y., Verlan, S.: Minimal Cooperation in Symport/Antiport Tissue P Systems. International Journal of Foundation of Computer Science 18(1), 163–179 (2007)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bernardini, F., Gheorghe, M.: On the Power of Minimal Symport/Antiport. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing. LNCS, vol. 2933, pp. 72–83. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Bernardini, F., Păun, A.: Universality of Minimal Symport/Antiport: Five Membranes Suffice. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing. LNCS, vol. 2933, pp. 43–45. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Freund, R., Oswald, M.: GP Systems with Forbidding Context. Fundamenta Informaticae 49, 1–3, 81–102 (2002)Google Scholar
  12. 12.
    Freund, R., Oswald, M.: P Systems with Activated/Prohibited Membrane Channels. In: [29], pp. 261–268Google Scholar
  13. 13.
    Freund, R., Păun, A.: Membrane Systems with Symport/Antiport: Universality Results. In: [29], pp. 270–287Google Scholar
  14. 14.
    Frisco, P.: About P Systems with Symport/Antiport. In: Păun, G., Riscos-Núñez, A., Romero-Jiménez, A., Sancho-Caparrini, F. (eds.) Second Brainstorming Week on Membrane Computing. TR 01/2004, Research Group on Natural Computing, University of Seville, pp. 224–236 (2004)Google Scholar
  15. 15.
    Frisco, P., Hoogeboom, H.J.: Simulating Counter Automata by P Systems with Symport/Antiport. In: [29], pp. 288–301Google Scholar
  16. 16.
    Frisco, P., Hoogeboom, H.J.: P Systems with Symport/Antiport Simulating Counter Automata. Acta Informatica 41, 2–3, 145–170 (2004)Google Scholar
  17. 17.
    Gutiérrez-Naranjo, M.A., Păun, G., Pérez-Jiménez, M.J. (eds.): Cellular Computing (Complexity Aspects). ESF PESC Exploratory Workshop. Fénix Editora, Sevilla (2005)Google Scholar
  18. 18.
    Gutiérrez-Naranjo, M.A., Riscos-Núñez, A., Romero-Campero, F.J., Sburlan, D. (eds.): Third Brainstorming Week on Membrane Computing. RGNC TR 01/2005, University of Seville. Fénix Editora, Sevilla (2005)Google Scholar
  19. 19.
    Kari, L., Martín-Vide, C., Păun, A.: On the Universality of P Systems with Minimal Symport/Antiport Rules. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 254–265. Springer, Heidelberg (2003)Google Scholar
  20. 20.
    Margenstern, M., Rogozhin, V., Rogozhin, Y., Verlan, S.: About P Systems with Minimal Symport/Antiport Rules and Four Membranes. In: [22], pp. 283–294Google Scholar
  21. 21.
    Martín-Vide, C., Păun, A., Păun, G.: On the Power of P Systems with Symport Rules. Journal of Universal Computer Science 8(2), 317–331 (2002)MathSciNetGoogle Scholar
  22. 22.
    Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.): WMC 2004. LNCS, vol. 3365. Springer, Heidelberg (2005)MATHGoogle Scholar
  23. 23.
    Minsky, M.L.: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New Jersey (1967)MATHGoogle Scholar
  24. 24.
    Păun, A., Păun, G.: The Power of Communication: P Systems with Symport/Antiport. New Generation Computing 20, 295–305 (2002)CrossRefMATHGoogle Scholar
  25. 25.
    Păun, G.: Computing with Membranes. Journal of Computer and Systems Science 61, 108–143 (2000)CrossRefMATHGoogle Scholar
  26. 26.
    Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)MATHGoogle Scholar
  27. 27.
    Păun, G.: Further Twenty Six Open Problems in Membrane Computing. In: [18], pp. 249–262 (2005)Google Scholar
  28. 28.
    Păun, G.: 2006 Research Topics in Membrane Computing. In: Gutiérrez-Naranjo, M.A., Păun, G., Riscos-Núñez, A., Romero-Campero, F.J. (eds.) Fourth Brainstorming Week on Membrane Computing, vol. 1, pp. 235–251. Fénix Edit., Sevilla (2006)Google Scholar
  29. 29.
    Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.): Membrane Computing. LNCS, vol. 2597. Springer, Heidelberg (2003)MATHGoogle Scholar
  30. 30.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3. Springer, Berlin (1997)MATHGoogle Scholar
  31. 31.
    Vaszil, G.: On the Size of P Systems with Minimal Symport/Antiport. In: [22], pp. 422–431Google Scholar
  32. 32.
    Verlan, S.: Optimal Results on Tissue P Systems with Minimal Symport/ Antiport. In: EMCC meeting, Lorentz Center, Leiden (2004)Google Scholar
  33. 33.
    Verlan, S.: Tissue P Systems with Minimal Symport/Antiport. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 418–430. Springer, Heidelberg (2004)Google Scholar
  34. 34.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Artiom Alhazov
    • 1
    • 2
  • Yurii Rogozhin
    • 1
    • 3
  1. 1.Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, Str. Academiei 5, Chişinău, MD-2028Moldova
  2. 2.Åbo Akademi University, Department of Information Technologies, Turku Center for Computer Science, FIN-20520 TurkuFinland
  3. 3.Rovira i Virgili University, Research Group on Mathematical Linguistics, Pl. Imperial Tàrraco 1, 43005 TarragonaSpain

Personalised recommendations