The Calculus of Looping Sequences for Modeling Biological Membranes

  • Roberto Barbuti
  • Andrea Maggiolo–Schettini
  • Paolo Milazzo
  • Angelo Troina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4860)

Abstract

We survey the formalism Calculus of Looping Sequences (CLS) and a number of its variants from the point of view of their use for describing biological membranes. The CLS formalism is based on term rewriting and allows describing biomolecular systems. A first variant of CLS, called Stochastic CLS, extends the formalism with stochastic time, another variant, called LCLS (CLS with links), allows describing proteins interaction at the domain level. A third variant is introduced for easier description of biological membranes. This extension can be encoded into CLS as well as other formalisms capable of membrane description such as Brane Calculi and P Systems. Such encodings allow verifying and simulating descriptions in Brane Calculi and P Systems by means of verifiers and simulators developed for CLS.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Belta, C., Ivancic, F., Kumar, V., Mintz, M., Pappas, G.J., Rubin, H., Schug, J.: Hybrid Modeling and Simulation of Biomolecular Networks. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 19–32. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Barbuti, R., Cataudella, S., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A Probabilistic Model for Molecular Systems. Fundamenta Informaticae 67, 13–27 (2005)MATHGoogle Scholar
  3. 3.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A Calculus of Looping Sequences for Modelling Microbiological Systems. Fundamenta Informaticae 72, 21–35 (2006)MATHMathSciNetGoogle Scholar
  4. 4.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: Bisimulation Congruences in the Calculus of Looping Sequences. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 93–107. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P.: Extending the Calculus of Looping Sequences to Model Protein Interaction at the Domain Level. In: Mandoiu, I., Zelikovsky, A. (eds.) ISBRA 2007. LNCS (LNBI), vol. 4463, pp. 638–649. Springer, Heidelberg (2007)Google Scholar
  6. 6.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tiberi, P., Troina, A.: Stochastic CLS for the Modeling and Simulation of Biological Systems (submitted for publication), draft available at: http://www.di.unipi.it/~milazzo/
  7. 7.
    Cardelli, L.: Brane Calculi. Interactions of Biological Membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–280. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schachter, V.: Modeling and Querying Biomolecular Interaction Networks. Theoretical Computer Science 325(1), 25–44 (2004)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Curti, M., Degano, P., Priami, C., Baldari, C.T.: Modelling Biochemical Pathways through Enhanced pi-calculus. Theoretical Computer Science 325, 111–140 (2004)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dang, Z., Ibarra, O.H.: On P Systems Operating in Sequential and Limited Parallel Modes. In: Workshop on Descriptional Complexity of Formal Systems, pp. 164–177 (2004)Google Scholar
  11. 11.
    Danos, V., Laneve, C.: Formal Molecular Biology. Theoretical Computer Science 325, 69–110 (2004)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gillespie, D.: Exact Stochastic Simulation of Coupled Chemical Reactions. Journal of Physical Chemistry 81, 2340–2361 (1977)CrossRefGoogle Scholar
  13. 13.
    Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic Symbolic Model Checking with PRISM: a Hybrid Approach. Int. Journal on Software Tools for Technology Transfer 6, 128–142 (2004)Google Scholar
  14. 14.
    Laneve, C., Tarissan, F.: A Simple Calculus for Proteins and Cells. In: MeCBIC 2006. Workshop on Membrane Computing and Biological Inspired Process Calculi (to appear in ENTCS)Google Scholar
  15. 15.
    Milazzo, P.: Qualitative and Quantitative Formal Modeling of Biological Systems. PhD Thesis, Università di Pisa (2007)Google Scholar
  16. 16.
    Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri Net Representation of Gene Regulatory Network. In: Pacific Symposium on Biocomputing, pp. 341–352. World Scientific Press, Singapore (2000)Google Scholar
  17. 17.
    Pǎun, G.: Computing with Membranes. Journal of Computer and System Sciences 61, 108–143 (2000)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Pǎun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)Google Scholar
  19. 19.
    Pérez–Jiménez, M.J., Romero–Campero, F.J.: A Study of the Robustness of the EGFR Signalling Cascade Using Continuous Membrane Systems. In: Mira, J.M., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3561, pp. 268–278. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Priami, C.: Stochastic π–Calculus. The Computer Journal 38, 578–589 (1995)CrossRefGoogle Scholar
  21. 21.
    Priami, C., Quaglia, P.: Beta Binders for Biological Interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)Google Scholar
  22. 22.
    Priami, C., Regev, A., Silvermann, W., Shapiro, E.: Application of a Stochastic Name–Passing Calculus to Representation and Simulation of Molecular Processes. Information Processing Letters 80, 25–31 (2001)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: An Abstraction for Biological Compartments. Theoretical Computer Science 325, 141–167 (2004)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Regev, A., Shapiro, E.: The π–Calculus as an Abstraction for Biomolecular Systems. In: Modelling in Molecular Biology. Natural Computing Series, pp. 219–266. Springer, Heidelberg (2004)Google Scholar
  25. 25.
    Regev, A., Silverman, W., Shapiro, E.Y.: Representation and Simulation of Biochemical Processes Using the pi-calculus Process Algebra. In: Pacific Symposium on Biocomputing, pp. 459–470. World Scientific Press, Singapore (2001)Google Scholar
  26. 26.
    Wiley, H.S., Shvartsman, S.Y., Lauffenburger, D.A.: Computational Modeling of the EGF–Receptor System: a Paradigm for Systems Biology. Trends in Cell Biology 13, 43–50 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Roberto Barbuti
    • 1
  • Andrea Maggiolo–Schettini
    • 1
  • Paolo Milazzo
    • 1
  • Angelo Troina
    • 2
    • 3
  1. 1.Dip. di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127 - PisaItaly
  2. 2.LIX - École Polytechnique Rue de Saclay, 91128 - PalaiseauFrance
  3. 3.LSV - ENS Cachan 61 Avenue du Président Wilson, 94235 - CachanFrance

Personalised recommendations