Advertisement

On Flip-Flop Membrane Systems with Proteins

  • Andrei Păun
  • Alfonso Rodríguez-Patón
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4860)

Abstract

We consider once again the membrane systems with proteins on membranes. This model is bridging the membrane systems and brane calculi areas together, thus it is interesting to study it in more depth. We improve previous results in the area and also define a new variant of these systems based on time as the output of the computation. The new model allows (due to its flexibility) even stronger improvements with respect to the number of proteins needed to perform the computation.

Keywords

Membrane System Output Register Register Machine Membrane Computing Wrong Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science, New York (2002)Google Scholar
  2. 2.
    Alhazov, A., Freund, R., Rogozhin, Y.: Some Optimal Results on Symport/Antiport P Systems with Minimal Cooperation. In: Gutiérrez-Naranjo, M.A., et al. (eds.) Cellular Computing (Complexity Aspects), ESF PESC Exploratory Workshop, pp. 23–36. Fénix Editora, Sevilla (2005)Google Scholar
  3. 3.
    Alhazov, A., Freund, R., Rogozhin, Y.: Computational Power of Symport / Antiport: History, Advances and Open Problems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 1–30. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Bernardini, F., Păun, A.: Universality of Minimal Symport/Antiport: Five Membranes Suffice. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing. LNCS, vol. 2933, pp. 43–54. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Cardelli, L.: Brane Calculi – Interactions of Biological Membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–280. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Cavaliere, M., Freund, R., Păun, G.: Event–Related Outputs of Computations in P Systems. In: Gutiérrez-Naranjo, M.A., et al. (eds.) Cellular Computing (Complexity Aspects), ESF PESC Exploratory Workshop, pp. 107–122. Fénix Editora, Sevilla (2005)Google Scholar
  7. 7.
    Freund, R., Păun, A.: Membrane Systems with Symport/Antiport: Universality Results. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) Membrane Computing. LNCS, vol. 2597, pp. 270–287. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Ibarra, O.H., Păun, A.: Counting Time in Computing with Cells. In: Carbone, A., Pierce, N.A. (eds.) DNA Computing. LNCS, vol. 3892, pp. 112–128. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Krishna, S.N.: Combining Brane Calculus and Membrane Computing. In: BIC-TA 2006. Proc. Bio-Inspired Computing – Theory and Applications Conf, Wuhan, China (September 2006), Membrane Computing Section and Journal of Automata Languages and Combinatorics (in press)Google Scholar
  10. 10.
    Minsky, M.L.: Recursive Unsolvability of Post’s Problem of “Tag” and Other Topics in Theory of Turing Machines. Annals of Mathematics 74, 437–455 (1961)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New Jersey (1967)MATHGoogle Scholar
  12. 12.
    Nagda, H., Păun, A., Rodríguez-Patón, A.: P Systems with Symport/Antiport and Time. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 429–442. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Păun, A., Păun, G.: The Power of Communication: P Systems with Symport/Antiport. New Generation Computing 20(3), 295–306 (2002)CrossRefMATHGoogle Scholar
  14. 14.
    Păun, A., Popa, B.: P Systems with Proteins on Membranes. Fundamenta Informaticae 72(4), 467–483 (2006)MathSciNetMATHGoogle Scholar
  15. 15.
    Păun, A., Popa, B.: P Systems with Proteins on Membranes and Membrane Division. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 292–303. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Păun, G.: Membrane Computing – An Introduction. Springer, Heidelberg (2002)MATHGoogle Scholar
  17. 17.
    Păun, G.: Further Twenty-six Open Problems on Membrane Computing. In: The Third Brainstorming Meeting on Membrane Computing, Sevilla, Spain (February 2005)Google Scholar
  18. 18.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. 3 volumes, Springer, Berlin (1997)Google Scholar
  19. 19.
    The P Systems Website: http://psystems.disco.unimib.it

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Andrei Păun
    • 1
    • 2
    • 3
  • Alfonso Rodríguez-Patón
    • 3
  1. 1.Department of Computer Science/IfM, Louisiana Tech University, P.O. Box 10348, Ruston, LA 71272USA
  2. 2.National Institute Research and Development for Biological Sciences, Splaiul Independenţei nr. 296, Sector 6, 060031 Bucharest 
  3. 3.Universidad Politécnica de Madrid - UPM, Facultad de Informática, Campus de Montegancedo S/N, Boadilla del Monte, 28660 MadridSpain

Personalised recommendations