Active Membrane Systems Without Charges and Using Only Symmetric Elementary Division Characterise P

  • Niall Murphy
  • Damien Woods
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4860)


In this paper we introduce a variant of membrane systems with elementary division and without charges. We allow only elementary division where the resulting membranes are identical; we refer to this using the biological term symmetric division. We prove that this model characterises P and introduce logspace uniform families. This result characterises the power of a class of membrane systems that fall under the so-called P conjecture for membrane systems.


Equivalence Class Polynomial Time Membrane System Object Type Computation Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science, New York (2002)Google Scholar
  2. 2.
    Alhazov, A., Pérez-Jiménez, M.J.: Uniform solution to QSAT using polarizationless active membranes. In: Gutiérrez-Naranjo, M.A., Păun, G., Riscos-Núñez, A., Romero-Campero, F.J. (eds.) Fourth Brainstorming Week on Membrane Computing, Sevilla, January 30-February 3, 2006, vol. I, pp. 29–40. Fénix Editora (2006)Google Scholar
  3. 3.
    Balcázar, J.L., Diaz, J., Gabarró, J.: Structural complexity I, 2nd edn. Springer, Berlin (1988)zbMATHGoogle Scholar
  4. 4.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Campero, F.J.: Computational efficiency of dissolution rules in membrane systems. International Journal of Computer Mathematics 83(7), 593–611 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ladner, R.E.: The circuit value problem is log space complete for P. SIGACT News 7(1), 18–20 (1975)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Păun, G.: P Systems with active membranes: Attacking NP-Complete problems. Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)MathSciNetGoogle Scholar
  7. 7.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)Google Scholar
  8. 8.
    Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes in models of cellular computing with membranes. Natural Computing 2(3), 265–285 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Sosík, P., Rodríguez-Patón, A.: Membrane computing and complexity theory: A characterization of PSPACE. Journal of Computer and System Sciences 73(1), 137–152 (2007)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Niall Murphy
    • 1
  • Damien Woods
    • 2
  1. 1.Department of Computer Science, National University of Ireland, MaynoothIreland
  2. 2.Department of Computer Science, University College CorkIreland

Personalised recommendations