2006: Celebrating 75 Years of AI - History and Outlook: The Next 25 Years

  • Jürgen Schmidhuber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4850)


When Kurt Gödel layed the foundations of theoretical computer science in 1931, he also introduced essential concepts of the theory of Artificial Intelligence (AI). Although much of subsequent AI research has focused on heuristics, which still play a major role in many practical AI applications, in the new millennium AI theory has finally become a full-fledged formal science, with important optimality results for embodied agents living in unknown environments, obtained through a combination of theory à la Gödel and probability theory. Here we look back at important milestones of AI history, mention essential recent results, and speculate about what we may expect from the next 25 years, emphasizing the significance of the ongoing dramatic hardware speedups, and discussing Gödel-inspired, self-referential, self-improving universal problem solvers.


Statistical Machine Translation Chess Program Turing Award Winner 19th Century Statistical Mechan Point Contact Transistor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press, Oxford (1995)Google Scholar
  2. 2.
    Brooks, R.A.: Intelligence without reason. In: Proceedings of the Twelveth Internationl Joint Conference on Artificial Intelligence, pp. 569–595 (1991)Google Scholar
  3. 3.
    Dickmanns, E.D., Behringer, R., Dickmanns, D., Hildebrandt, T., Maurer, M., Thomanek, F., Schiehlen, J.: The seeing passenger car ’VaMoRs-P’. In: Proc. Int. Symp. on Intelligent Vehicles 1994, Paris, pp. 68–73 (1994)Google Scholar
  4. 4.
    Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimization. Artificial Life 5(2), 137–172 (1999)CrossRefGoogle Scholar
  5. 5.
    Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik 38, 173–198 (1931)zbMATHCrossRefGoogle Scholar
  6. 6.
    Gomez, F., Schmidhuber, J., Miikkulainen, R.: Efficient non-linear control through neuroevolution. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Gomez, F.J., Miikkulainen, R.: Active guidance for a finless rocket using neuroevolution. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Graves, A., Fernandez, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural nets. In: ICML 2006. Proceedings of the International Conference on Machine Learning (2006)Google Scholar
  9. 9.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  10. 10.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  11. 11.
    Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability. Springer, Berlin (2004) (On J. Schmidhuber’s SNF grant 20-61847) Google Scholar
  12. 12.
    Kohonen, T.: Self-Organization and Associative Memory, 2nd edn. Springer, Heidelberg (1988)zbMATHGoogle Scholar
  13. 13.
    Kolmogorov, A.N.: Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin (1933)Google Scholar
  14. 14.
    Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems of Information Transmission 1, 1–11 (1965)Google Scholar
  15. 15.
    Levin, L.A.: Universal sequential search problems. Problems of Information Transmission 9(3), 265–266 (1973)Google Scholar
  16. 16.
    Lohmeier, S., Loeffler, K., Gienger, M., Ulbrich, H., Pfeiffer, F.: Sensor system and trajectory control of a biped robot. In: AMC 2004. Proc. 8th IEEE International Workshop on Advanced Motion Control, Kawasaki, Japan, pp. 393–398. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  17. 17.
    Minsky, M., Papert, S.: Perceptrons. MIT Press, Cambridge, MA (1969)zbMATHGoogle Scholar
  18. 18.
    Nilsson, N.J.: Principles of artificial intelligence. Morgan Kaufmann, San Francisco (1980)zbMATHGoogle Scholar
  19. 19.
    Pearlmutter, B.A.: Gradient calculations for dynamic recurrent neural networks: A survey. IEEE Transactions on Neural Networks 6(5), 1212–1228 (1995)CrossRefGoogle Scholar
  20. 20.
    Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (2001)Google Scholar
  21. 21.
    Popper, K.R.: All Life Is Problem Solving. Routledge, London (1999)Google Scholar
  22. 22.
    Rechenberg, I.: Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Dissertation, 1971. Fromman-Holzboog (1973)Google Scholar
  23. 23.
    Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)zbMATHCrossRefGoogle Scholar
  24. 24.
    Rosenbloom, P.S., Laird, J.E., Newell, A.: The SOAR Papers. MIT Press, Cambridge (1993)Google Scholar
  25. 25.
    Schmidhuber, J.: Curious model-building control systems. In: Proceedings of the International Joint Conference on Neural Networks, Singapore, vol. 2, pp. 1458–1463. IEEE press, Los Alamitos (1991)CrossRefGoogle Scholar
  26. 26.
    Schmidhuber, J.: The Speed Prior: a new simplicity measure yielding near-optimal computable predictions. In: Kivinen, J., Sloan, R.H. (eds.) COLT 2002. LNCS (LNAI), vol. 2375, pp. 216–228. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. 27.
    Schmidhuber, J.: Artificial Intelligence - history highlights and outlook: AI maturing and becoming a real formal science (2006),
  28. 28.
    Schmidhuber, J.: Developmental robotics, optimal artificial curiosity, creativity, music, and the fine arts. Connection Science 18(2), 173–187 (2006)CrossRefGoogle Scholar
  29. 29.
    Schmidhuber, J.: Gödel machines: fully self-referential optimal universal problem solvers. In: Goertzel, B., Pennachin, C. (eds.) Artificial General Intelligence, pp. 201–228. Springer, Heidelberg (2006)Google Scholar
  30. 30.
    Schmidhuber, J.: Is history converging? Again? (2006),
  31. 31.
    Schmidhuber, J.: New millennium AI and the convergence of history. In: Duch, W., Mandziuk, J. (eds.) Challenges to Computational Intelligence, Springer, Heidelberg (in press, 2006) Also available as TR IDSIA-04-03, cs.AI/0302012 Google Scholar
  32. 32.
    Schmidhuber, J., Wierstra, D., Gagliolo, M., Gomez, F.: Training recurrent networks by EVOLINO. Neural Computation 19(3), 757–779 (2007)zbMATHCrossRefGoogle Scholar
  33. 33.
    Shannon, C.E.: A mathematical theory of communication (parts I and II). Bell System Technical Journal XXVII, 379–423 (1948)MathSciNetGoogle Scholar
  34. 34.
    Smil, V.: Detonator of the population explosion. Nature 400, 415 (1999)CrossRefGoogle Scholar
  35. 35.
    Solomonoff, R.J.: Complexity-based induction systems. IEEE Transactions on Information Theory IT-24(5), 422–432 (1978)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Sutton, R., Barto, A.: Reinforcement learning: An introduction. MIT Press, Cambridge, MA (1998)Google Scholar
  37. 37.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Series 2 41, 230–267 (1936)Google Scholar
  38. 38.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)zbMATHGoogle Scholar
  39. 39.
    Vinge, V.: The coming technological singularity. In: VISION-21 Symposium sponsored by NASA Lewis Research Center, and Whole Earth Review, Winter issue (1993)Google Scholar
  40. 40.
    Werbos, P.J.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University (1974)Google Scholar
  41. 41.
    Yao, X.: A review of evolutionary artificial neural networks. International Journal of Intelligent Systems 4, 203–222 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jürgen Schmidhuber
    • 1
  1. 1.TU Munich, Boltzmannstr. 3, 85748 Garching bei München, Germany, and IDSIA, Galleria 2, 6928 Manno (Lugano)Switzerland

Personalised recommendations