Advertisement

AI in Locomotion: Challenges and Perspectives of Underactuated Robots

  • Fumiya Iida
  • Rolf Pfeifer
  • André Seyfarth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4850)

Abstract

This article discusses the issues of adaptive autonomous navigation as a challenge of artificial intelligence. We argue that, in order to enhance the dexterity and adaptivity in robot navigation, we need to take into account the decentralized mechanisms which exploit physical system-environment interactions. In this paper, by introducing a few underactuated locomotion systems, we explain (1) how mechanical body structures are related to motor control in locomotion behavior, (2) how a simple computational control process can generate complex locomotion behavior, and (3) how a motor control architecture can exploit the body dynamics through a learning process. Based on the case studies, we discuss the challenges and perspectives toward a new framework of adaptive robot control.

Keywords

Biped Robot Body Dynamic Rough Terrain Quadruped Robot Passive Joint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leonard, J.J., Durrant-Whyte, H.F.: Simultaneous map building and localization for an autonomous mobile robot. In: IEEE/RSJ International Workshop on Intelligent Robots and Systems, pp. 1442–1447 (1991)Google Scholar
  2. 2.
    Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47, 139–159 (1991)CrossRefGoogle Scholar
  3. 3.
    Arkin, R.C.: Behavior-based robotics. MIT Press, Cambridge (1998)Google Scholar
  4. 4.
    Brooks, R.A.: A robot that walks: Emergent behaviors from a carefully evolved network. Neural Computation 1(2), 253–262 (1989)CrossRefGoogle Scholar
  5. 5.
    Braitenberg, V.: Vehicles - Experiments in synthetic psychology. MIT Press, Cambridge (1984)Google Scholar
  6. 6.
    Pfeifer, R., Scheier, C.: Understanding Intelligence. The MIT Press, Cambridge (1999)Google Scholar
  7. 7.
    Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.): Embodied Artificial Intelligence. LNCS (LNAI), vol. 3139. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Pfeifer, R., Iida, F., Bongard, J.: New robotics: Design principles for intelligent systems. Artificial Life 11(1-2), 99–120 (2005)CrossRefGoogle Scholar
  9. 9.
    McGeer, T.: Passive Dynamic Walking. The International Journal of Robotics Research 9(2), 62–82 (1990)CrossRefGoogle Scholar
  10. 10.
    Collins, S.H., Wisse, M., Ruina, A.: A three-dimentional passive-dynamic walking robot with two legs and knees. International Journal of Robotics Research 20, 607–615 (2001)CrossRefGoogle Scholar
  11. 11.
    Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive dynamic walkers. Science Magazine 307, 1082–1085 (2005)Google Scholar
  12. 12.
    Ziegler, M., Iida, F., Pfeifer, R.: “Cheap” underwater locomotion: Roles of morphological properties and behavioural diversity. In: Proceedings of Climbing and Walking Robots (2006)Google Scholar
  13. 13.
    McMahon, T.A., Cheng, G.C.: The mechanics of running: How does stiffness couple with speed? Journal of Biomechanics 23(suppl. 1), 65–78 (1990)CrossRefGoogle Scholar
  14. 14.
    Blickhan, R.: The spring-mass model for running and hopping. Journal of Biomechanics 22, 1217–1227 (1989)CrossRefGoogle Scholar
  15. 15.
    Seyfarth, A., Geyer, H., Guenther, M., Blickhan, R.: A movement criterion for running. Journal of Biomechanics 35, 649–655 (2002)CrossRefGoogle Scholar
  16. 16.
    Iida, F., Minekawa, Y., Rummel, J., Seyfarth, A.: Toward a human-like biped robot with compliant legs. In: Arai, T., et al. (eds.) Intelligent Autonomous Systems - 9, pp. 820–827. IOS Press, Amsterdam (2006)Google Scholar
  17. 17.
    Iida, F., Rummel, J., Seyfarth, A.: Bipedal walking and running with compliant legs. In: International Conference on Robotics and Automation (ICRA 2007), pp. 3970–3975 (2007)Google Scholar
  18. 18.
    Iida, F., Tedrake, R.: Motor control optimization of compliant one-legged locomotion in rough terrain. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2007) (in press, 2007)Google Scholar
  19. 19.
    Rummel, J., Iida, F., Seyfarth, A.: One-legged locomotion with a compliant passive joint. In: Arai, T., et al. (eds.) Intelligent Autonomous Systems – 9, pp. 566–573. IOS Press, Amsterdam (2006)Google Scholar
  20. 20.
    Buehler, M., Battaglia, R., Cocosco, A., Hawker, G., Sarkis, J., Yamazaki, K.: Scout: A simple quadruped that walks, climbs and runs. In: Proc. Int. Conf on Robotics and Automation, pp. 1707–1712 (1998)Google Scholar
  21. 21.
    Kubow, T.M., Full, R.J.: The role of the mechanical system in control: a hypothesis of self-stabilization in hexapedal runners. Phil. Trans. R. Soc. Lond. B 354, 849–861 (1999)CrossRefGoogle Scholar
  22. 22.
    Raibert, H.M.: Legged Robots That Balance. MIT Press, Cambridge (1986)Google Scholar
  23. 23.
    Iida, F., Pfeifer, R.: “Cheap” rapid locomotion of a quadruped robot: Self-stabilization of bounding gait. In: Groen, F., et al. (eds.) Intelligent Autonomous Systems 8, vol. 35, IOS Press, Amsterdam (2004)Google Scholar
  24. 24.
    Iida, F., Gomez, G.J., Pfeifer, R.: Exploiting body dynamics for controlling a running quadruped robot. In: ICAR 2005, July 18th-20th, Seattle, U.S.A. pp. 229–235 (2005)Google Scholar
  25. 25.
    Cham, J.G., Bailey, S.A., Clark, J.E., Full, R.J., Cutkosky, M.R.: Fast and robust: hexapedal robots via shape deposition manufacturing. The International Journal of Robotics Research 21(10), 869–882 (2002)CrossRefGoogle Scholar
  26. 26.
    Raibert, M.H.: Trotting, pacing and bounding by a quadruped robot. Journal of Biomechanics 23(suppl. 1), 79–98 (1990)CrossRefGoogle Scholar
  27. 27.
    Taga, G., Yamaguchi, Y., Shimizu, H.: Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biological Cybernetics 65, 147–159 (1991)MATHCrossRefGoogle Scholar
  28. 28.
    Tedrake, R., Zhang, T.W., Seung, H.S.: Stochastic policy gradient reinforcement learning on a simple 3D biped. In: Proc. of the 10th Int. Conf. on Intelligent Robots and Systems pp. 2849–2854 (2004)Google Scholar
  29. 29.
    Geng, T., Porr, B., Wörgötter, F.: A reflexive neural network for dynamic biped walking control. Neural Computation 18(5), 1156–1196 (2006)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Buchli, J., Iida, F., Ijspeert, A.J.: Finding resonance: Adaptive frequency oscillators for dynamic legged locomotion. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2006), pp. 3903–3909 (2006)Google Scholar
  31. 31.
    Iida, F., Pfeifer, R.: Sensing through body dynamics. Robotics and Autonomous Systems 54(8), 631–640 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Fumiya Iida
    • 1
    • 2
  • Rolf Pfeifer
    • 2
  • André Seyfarth
    • 3
  1. 1.Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139USA
  2. 2.Artificial Intelligence Laboratory, Department of Informatics, University of Zurich, Andreasstrasse 15, CH-8050 ZurichSwitzerland
  3. 3.Locomotion Laboratory, University of Jena, Dornburger Strasse 23, D-07743 JenaGermany

Personalised recommendations