Advertisement

Quality of Adaptation of Fusion ViSOM

  • Bruno Baruque
  • Emilio Corchado
  • Hujun Yin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4881)

Abstract

This work presents a research on the performance capabilities of an extension of the ViSOM (Visualization Induced SOM) algorithm by the use of the ensemble meta-algorithm and a later fusion process. This main fusion process has two different variants, considering two different criteria for the similarity of nodes. These criteria are Euclidean distance and similarity on Voronoi polygons. The capabilities, strengths and weakness of the different variants of the model are discussed and compared more deeply in the present work. The details of several experiments performed over different datasets applying the variants of the fusion to the ViSOM algorithm along with same variants of fusion with the SOM are included for this purpose.

Keywords

Input Space Cancer Dataset Ensemble Technique Best Match Unit Voronoi Polygon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kohonen, T., Lehtio, P., Rovamo, J., Hyvarinen, J., Bry, K., Vainio, L.: A Principle of Neural Associative Memory. Neuroscience 2, 1065–1076 (1977)CrossRefGoogle Scholar
  2. 2.
    Kohonen, T.: The Self-Organizing Map. Neurocomputing 21, 1–6 (1998)zbMATHCrossRefGoogle Scholar
  3. 3.
    Yin, H.: Visom - a Novel Method for Multivariate Data Projection and Structure Visualization. IEEE Transactions on Neural Networks 13, 237–243 (2002)CrossRefGoogle Scholar
  4. 4.
    Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms, p. 471210781 (2004)Google Scholar
  5. 5.
    Ron, M., Gunnar, R.: An Introduction to Boosting and Leveraging. In: Mendelson, S., Smola, A.J. (eds.) Advanced Lectures on Machine Learning. LNCS (LNAI), vol. 2600, pp. 118–183. Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Yin, H.: Data Visualisation and Manifold Mapping Using the Visom. Neural Networks 15, 1005–1016 (2002)CrossRefGoogle Scholar
  7. 7.
    Pölzlbauer, G.: Survey and Comparison of Quality Measures for Self-Organizing Maps. In: WDA 2004. Fifth Workshop on Data Analysis, pp. 67–82. Elfa Academic Press (2004)Google Scholar
  8. 8.
    Lampinen, J., Oja, E.: Clustering Properties of Hierarchical Self-Organizing Maps. Artificial Neural Networks 2, 1219–1222 (1992)Google Scholar
  9. 9.
    Ruta, D., Gabrys, B.: A Theoretical Analysis of the Limits of Majority Voting Errors for Multiple Classifier Systems. Pattern Analysis and Applications 5, 333–350 (2002)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Petrakieva, L., Fyfe, C.: Bagging and Bumping Self Organising Maps. Computing and Information Systems (2003)Google Scholar
  11. 11.
    Baruque, B., Corchado, E., Yin, H.: Visom Ensembles for Visualization and Classification. In: Sandoval, F., Gonzalez Prieto, A., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, Springer, Heidelberg (2007)Google Scholar
  12. 12.
    Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Saavedra, C., Salas, R., Moreno, S., Allende, H.: Fusion of Self Organizing Maps. In: Sandoval, F., Gonzalez Prieto, A., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 227–234. Springer, Heidelberg (2007)Google Scholar
  14. 14.
    Georgakis, A., Li, H., Gordan, M.: An Ensemble of Som Networks for Document Organization and Retrieval. In: AKRR 2005. Int. Conf. on Adaptive Knowledge Representation and Reasoning, p. 6 (2005)Google Scholar
  15. 15.
    Newman, D.J., Hettich, S., Blake, C.L. and Merz, C.J.: Uci Repository of Machine Learning Databases. University of California, Irvine, Dept. of Information and Computer Sciences (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Bruno Baruque
    • 1
  • Emilio Corchado
    • 1
  • Hujun Yin
    • 2
  1. 1.Department of Civil Engineering. University of BurgosSpain
  2. 2.School of Electrical and Electronic Engineering. University of ManchesterUK

Personalised recommendations