Generalized Sudan’s List Decoding for Order Domain Codes

  • Olav Geil
  • Ryutaroh Matsumoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4851)

Abstract

We generalize Sudan’s list decoding algorithm without multiplicity to evaluation codes coming from arbitrary order domains. The number of correctable errors by the proposed method is larger than the original list decoding without multiplicity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen, H.E., Geil, O.: Evaluation Codes From Order Domain Theory. Finite Fields and Their Appl. (2007) doi:10.1016/j.ffa.2006.12.004Google Scholar
  2. 2.
    Augot, D., Stepanov, M.: Decoding Reed-Muller Codes with the Guruswami-Sudan’s Algorithm. In: Slides of Talk Given by D. Augot at Workshop D1 Special Semester on Gröbner Bases and Related Methods, RICAM, Linz (2006), http://www.ricam.oeaw.ac.at/specsem/srs/groeb/download/Augot.pdf
  3. 3.
    Geil, O., Pellikaan, R.: On the Structure of Order Domains. Finite Fields and Their Appl. 8, 369–396 (2002)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Geil, O.: On Codes From Norm-Trace Curves. Finite Fields and Their Appl. 9, 351–371 (2003)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Guruswami, V., Sudan, M.: Improved Decoding of Reed-Solomon and Algebraic-Geometry Codes. IEEE Trans. Inform. Theory 45(4), 1757–1767 (1999)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Høholdt, T., van Lint, J., Pellikaan, R.: Algebraic Geometry Codes. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, pp. 871–961. Elsevier, Amsterdam (1998)Google Scholar
  7. 7.
    O’Sullivan, M.E.: New Codes for the Berlekamp-Massey-Sakata Algorithm. Finite Fields and Their Appl. 7, 293–317 (2001)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Pellikaan, R., Wu, X.-W.: List Decoding of q-ary Reed-Muller Codes. IEEE Trans. Inform. Theory 50, 679–682 (2004)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Shokrollahi, M.A., Wasserman, H.: List Decoding of Algebraic-Geometric Codes. IEEE Trans. Inform. Theory 45(2), 432–437 (1999)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Sudan, M.: Decoding of Reed Solomon Codes Beyond the Error Correction Bound. J. Complexity 13, 180–193 (1997)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Wu, X.-W.: An Algorithm for Finding the Roots of the Polynomials Over Order Domains. In: 2002 IEEE International Symposium on Information Theory, p. 202. IEEE Press, New York (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Olav Geil
    • 1
  • Ryutaroh Matsumoto
    • 2
  1. 1.Department of Mathematical Sciences, Aalborg UniversityDenmark
  2. 2.Department of Communications and Integrated Systems, Tokyo Institute of TechnologyJapan

Personalised recommendations