Advertisement

Efficient Transient Noise Analysis in Circuit Simulation

  • Georg Denk
  • Werner Römisch
  • Thorsten Sickenberger
  • Renate Winkler

Abstract

Transient noise analysis means time domain simulation of noisy electronic circuits. We consider mathematical models where the noise is taken into account by means of sources of Gaussian white noise that are added to the deterministic network equations, leading to systems of stochastic differential algebraic equations (SDAEs). A crucial property of the arising SDAEs is the large number of small noise sources that are included. As efficient means of their integration we discuss adaptive linear multi-step methods, in particular stochastic analogues of the trapezoidal rule and the two-step backward differentiation formula, together with a new step-size control strategy. Test results including real-life problems illustrate the performance of the presented methods.

Keywords

Local Error Phase Noise Shot Noise Voltage Control Oscillator Solution Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, L.: Stochastic differential equations: Theory and Applications. Wiley, New York, 1974.zbMATHGoogle Scholar
  2. 2.
    Buckwar, E., Winkler, R.: Multi-step methods for SDEs and their application to problems with small noise. SIAM J. Num. Anal., 44(2), 779–803 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Denk, G.: Circuit simulation for nanoelectronics. In: M. Anile, G. AlÌ, G. Mascali (Eds.): Scientific Computing in Electrical Engineering (Mathematics in Industry 9), 13–20. Springer, Berlin, 2006.CrossRefGoogle Scholar
  4. 4.
    Denk, G., Winkler, R.: Modeling and simulation of transient noise in circuit simulation. Math. and Comp. Modelling of Dyn. Systems, 13(4), 383–394 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Dupačová J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochastic programming. Math. Program., Ser. A 95, 493–511 (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Günther, F., Feldmann, U.: CAD-based electric-circuit modeling in industry I. Mathematical structure and index of network equations. Surv. Math. Ind., 8, 97–129 (1999)zbMATHGoogle Scholar
  7. 7.
    Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review, 43, 525–546 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Tiebout, M.: A fully integrated 1.3 GHz VCO for GSM in 0.25 μm standard CMOS with a phasenoise of −142 dBc/Hz at 3MHz offset. In: Proceedings 30th European Microwave Conference, Paris (2000)Google Scholar
  9. 9.
    Römisch, W., Sickenberger, Th.: On generating a solution path tree for efficient step-size control. In preparation.Google Scholar
  10. 10.
    Römisch, W., Winkler, R.: Stepsize control for mean-square numerical methods for SDEs with small noise. SIAM J. Sci. Comp., 28(2), 604–625 (2006)CrossRefzbMATHGoogle Scholar
  11. 11.
    Sickenberger, T.: Mean-square convergence of stochastic multi-step methods with variable step-size. J. Comput. Appl. Math., to appearGoogle Scholar
  12. 12.
    Sickenberger, T., Winkler, R.: Efficient transient noise analysis in circuit simulation. In: Proceedings of the GAMM Annual Meeting 2006, Berlin, Proc. Appl. Math. Mech. 6(1), 55–58 (2006)Google Scholar
  13. 13.
    Sickenberger, T., Weinmüller, E., Winkler, R.: Local error estimates for moderately smooth problems: Part I – ODEs and DAEs. BIT Numerical Mathematics, 47(2), 157–187 (2007).CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Sickenberger, T., Weinmüller, E., Winkler, R.: Local error estimates for moderately smooth problems: Part II – SDEs and SDAEs. Preprint 07-07, Institut für Mathematik, Humboldt-Universität zu Berlin (2007). Submitted for publication.Google Scholar
  15. 15.
    Winkler, R.: Stochastic differential algebraic equations of index 1 and applications in circuit simulation. J. Comput. Appl. Math., 157(2), 477–505 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Winkler, R.: Stochastic differential algebraic equations in transient noise analysis. In: M. Anile, G. AlÌ, G. Mascali (Eds.): Scientific Computing in Electrical Engineering (Mathematics in Industry 9), 151–158. Springer, Berlin, 2006.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Georg Denk
    • 1
  • Werner Römisch
    • 2
  • Thorsten Sickenberger
    • 2
  • Renate Winkler
    • 2
  1. 1.ProductsQimonda AGMünchenGermany
  2. 2.Institute of MathematicsHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations