Parallel Adaptive Simulation of PEM Fuel Cells

  • Robert Klöfkorn
  • Dietmar Kröner
  • Mario Ohlberger


Polymer electrolyte membrane (PEM) fuel cells are currently being developed for production of electricity in stationary and portable applications. They benefit from pollution free operation and a potential for high energy conversion efficiency. As PEM fuel cells are currently operated within low temperature and pressure ranges, water management is one of the critical issues in performance optimization.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ALUGrid. Scholar
  2. 2.
    DUNE. Scholar
  3. 3.
    DUNE-Fem. dune/feminfo.html.Google Scholar
  4. 4.
    D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini. Unified analysis of discontinuous galerkin methods for elliptic problems. SIAM J. Num. Anal, 39:1749–1779, 2002.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    P. Bastian and M. Blatt. The Iterative Template Solver Library. In Proc. of the Workshop on State-of-the-Art in Scientific and Parallel Computing, PARA ’06. Springer, 2006.Google Scholar
  6. 6.
    P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger, and O. Sander. A Generic Grid Interface for Parallel and Adaptive Scientific Computing. Part II: Implementation and Tests in DUNE. Preprint 404, DFG Research Center MATHEON, 2007.Google Scholar
  7. 7.
    P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and O. Sander. A Generic Grid Interface for Parallel and Adaptive Scientific Computing. Part I: Abstract Framework. Preprint 403, DFG Research Center MATHEON, 2007.Google Scholar
  8. 8.
    P. Bastian and B. Riviere. Discontinuous galerkin methods for two-phase flow in porous media. Technical Report 28, IWR (SFB 359), Universität Heidelberg, 2004.Google Scholar
  9. 9.
    A. Burri, A. Dedner, D. Diehl, R. Klöfkorn, and M. Ohlberger. A general object oriented framework for discretizing nonlinear evolution equations. In Proc. of The 1st Kazakh-German Advanced Research Workshop on Computational Science and High Performance Computing, 2005.Google Scholar
  10. 10.
    B. Cockburn and C.-W. Shu. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems. SIAM J. Numer. Anal., 35(6):2440–2463, 1998.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    M.Y. Corapcioglu and A. Baehr. A compositional multiphase model for groundwater contamination by petroleum products: 1. theoretical considerations. Water Resource Research, 1987.Google Scholar
  12. 12.
    A. Dedner, C. Rohde, B. Schupp, and M. Wesenberg. A parallel, load balanced mhd code on locally adapted, unstructured grids in 3d. Computing and Visualization in Science, 7:79–96, 2004.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    D. Diehl. Higher Order Schemes for Simulation of Compressible Liquid – Vapor Flows with Phase Change. Dissertation, Institute of Mathematics, University Freiburg, 2007.Google Scholar
  14. 14.
    R. Helmig. Multiphase Flow and Transport Processes in the Subsurface: A contribution to the modeling of hydrosystems. Springer, Berlin, Heidelberg, 1997.Google Scholar
  15. 15.
    M. Ohlberger and C. Rohde. Adaptive finite volume approximations for weakly coupled convection dominated parabolic systems. IMA J. Numer. Anal., 22(2):253–280, 2002.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    K. Steinkamp, J. Schumacher, F. Goldsmith, M. Ohlberger, and C. Ziegler. A non-isothermal pem fuel cell model including two water transport mechanisms in the membrane. Preprint 4, Mathematisches Institut, Universität Freiburg, 2007.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Robert Klöfkorn
    • 1
  • Dietmar Kröner
    • 1
  • Mario Ohlberger
    • 2
  1. 1.Department for Applied MathematicsUniversity of FreiburgFreiburg i. Br.Germany
  2. 2.Institute for Numerical and Applied MathematicsUniversity of MünsterMünsterGermany

Personalised recommendations