Hidden Markov Models Applied to Snakes Behavior Identification

  • Wesley Nunes Gonçalves
  • Jonathan de Andrade Silva
  • Bruno Brandoli Machado
  • Hemerson Pistori
  • Albert Schiaveto de Souza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4872)

Abstract

This paper presents an application of the hidden Markov models (HMMs) to the recognition of snakes behaviors, an important and hard problem that, as far as the authors know, has not been tackled before, by the computer vision community. Experiments were conducted using different HMM configurations, including modifications on the number of internal states and the initialization procedures. The best results have shown a 84% correct classification rate, using HMMs with 4 states and an initialization procedure based on the K-Means algorithm.

Keywords

Hidden Markov Models Animals Behavior Recognition  Snakes 

References

  1. 1.
    Rivas, J.A., Burghardt, G.M.: Snake mating systems, behavior, and evolution: The revisionary implications of recent findings. Journal of Comparative Psychology 119(4), 447–454 (2005)CrossRefGoogle Scholar
  2. 2.
    Spink, A.J., Tegelenbosch, R.A.J., Buma, M.O.S., Noldus, L.P.J.J.: The ethovision video tracking system-a tool for behavioral phenotyping of transgenic mice. Physiology and Behavior 73(5), 731–744 (2001)CrossRefGoogle Scholar
  3. 3.
    Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)CrossRefGoogle Scholar
  4. 4.
    Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77, 257–286 (1990)CrossRefGoogle Scholar
  5. 5.
    Leo, M., D’Orazio, T., Spagnolo, P.: Human Activity Recognition for Automatic Visual Surveillance of Wide Areas, 1st edn. Academic Press, London (1999)Google Scholar
  6. 6.
    Hu, J., Brown, M.K., Turin, W.: Hmm based on-line handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell 18(10), 1039–1045 (1996)CrossRefGoogle Scholar
  7. 7.
    Hornegger, J., Niemann, H., Paulus, D., Schlottke, G.: Object recognition using Hidden Markov Models. In: Gelsema, E.S., Kanal, L.N. (eds.) Pattern Recognition in Practice IV: Multiple Paradigms, Comparative Studies and Hybrid Systems, vol. 16, pp. 37–44. Elsevier, Amsterdam (1994)Google Scholar
  8. 8.
    Starner, T., Pentland, A.: Visual recognition of american sign language using hidden markov models. Technical Report Master’s Thesis, MIT, Program in Media Arts & Sciences, Massachusetts Institute of Technology, Cambridge, USA (February 1995)Google Scholar
  9. 9.
    Aas, K., Line, E., Tove, A.: Text recognition from grey level images using hidden Markov models. In: Hlaváč, V., Šára, R. (eds.) CAIP 1995. LNCS, vol. 970, pp. 503–508. Springer, Heidelberg (1995)Google Scholar
  10. 10.
    Nefian, A.V., Hayes, M.H.: Face detection and recognition using hidden markov models. ICIP (1), 141–145 (1998)Google Scholar
  11. 11.
    Feldman, A., Balch, T.: Automatic identification of bee movement. Technical report, Georgia Institute of Technology, Atlanta, Georgia 30332, USA (2003)Google Scholar
  12. 12.
    Freeman, W., Tanaka, K., Ohta, J.: Computer vision for computer games. In: Int’l Workshop on Automatic Face- and Gesture-Recognition, Killington, Vermont, USA (1996)Google Scholar
  13. 13.
    Montero, J.A., Sucar, L.E.: Feature selection for visual gesture recognition using hidden markov models. In: ENC, pp. 196–203 (2004)Google Scholar
  14. 14.
    Shen, F., Hasegawa, O.: An adaptive incremental lbg for vector quantization. Neural Netw. 19(5), 694–704 (2006)MATHCrossRefGoogle Scholar
  15. 15.
    Malyszko, D., Wierzchon, S.T.: Standard and genetic k-means clustering techniques in image segmentation. CISIM 0, 299–304 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Wesley Nunes Gonçalves
    • 1
  • Jonathan de Andrade Silva
    • 1
  • Bruno Brandoli Machado
    • 1
  • Hemerson Pistori
    • 1
  • Albert Schiaveto de Souza
    • 1
  1. 1.Dom Bosco Catholic University, Research Group in Engineering and Computing, Av. Tamandaré, 6000, Jardim Seminário, 79117-900, Campo Grande, MSBrazil

Personalised recommendations