Approximate ESPs on Surfaces of Polytopes Using a Rubberband Algorithm

  • Fajie Li
  • Reinhard Klette
  • Xue Fu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4872)


Let p and q be two points on the surface of a polytope Π. This paper provides a rubberband algorithm for computing a Euclidean shortest path between p and q (a so-called surface ESP) that is contained on the surface of Π. The algorithm has \(\kappa_1(\varepsilon) \cdot \kappa_2(\varepsilon) \cdot {\cal O}(n^2)\) time complexity, where n is the number of vertices of Π, κ i (ε) = (L 0 i  − L i )/ε, for the true length L i of some shortest path with initial (polygonal path) length L 0 i (used when approximating this shortest path), for i = 1, 2. Rubberband algorithms follow a straightforward design strategy, and the proposed algorithm is easy to implement and thus of importance for applications, for example, when analyzing 3D objects in 3D image analysis, such as in biomedical or industrial image analysis, using 3D image scanners.


Rubberband algorithm Euclidean shortest path surface ESP 


  1. 1.
    Sharir, M., Schorr, A.: On shortest paths in polyhedral spaces. SIAM J. Computation 15, 193–215 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Reif, J.H., Storer, J.A.: A single-exponential upper bound for shortest paths in three dimensions. J. ACM 41, 1013–1019 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Canny, J., Reif, J.H.: Some algebraic and geometric configurations in pspace, 460–467 (1988)Google Scholar
  4. 4.
    Canny, J., Reif, J.: New lower bound techniques for robot motion planning problems, 49–60 (1987)Google Scholar
  5. 5.
    Sharir, M.: On shortest paths amidst convex polyhedra. SIAM J. Computation 16, 561–572 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gewali, L.P., Ntafos, S., Tollis, I.G.: Path planning in the presence of vertical obstacles. Technical report, Computer Science, University of Texas at Dallas (1989)Google Scholar
  7. 7.
    Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic problem. SIAM J. Computation 16, 647–668 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chen, J., Han, Y.: Shortest paths on a polyhedron, 360–369 (1990)Google Scholar
  9. 9.
    Kapoor, S.: Efficient computation of geodesic shortest paths. In: Proc. ACM Symp. Theory Computation, vol. 1, pp. 770–779 (1999)Google Scholar
  10. 10.
    Li, F., Klette, R.: Rubberband algorithms for solving various 2d or 3d shortest path problems. In: Proc. Computing: Theory and Applications, Platinum Jubilee Conference of The Indian Statistical Institute, pp. 9–18. IEEE, Los Alamitos (2007)Google Scholar
  11. 11.
    Li, F., Klette, R.: Euclidean shortest paths in simple polygons. Technical report CITR-202, Computer Science Department, The University of Auckland, Auckland (2007),
  12. 12.
    Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)zbMATHGoogle Scholar
  13. 13.
    Kiryati, N., Szekely, G.: Estimating shortest paths and minimal distances on digitized three dimensional surfaces. Pattern Recognition 26, 1623–1637 (1993)CrossRefGoogle Scholar
  14. 14.
    Li, F., Klette, R.: Exact and approximate algorithms for the calculation of shortest paths. Report 2141, ima, The University of Minnesota, Minneapolis (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Fajie Li
    • 1
  • Reinhard Klette
    • 2
  • Xue Fu
    • 3
    • 4
  1. 1.Institute for Mathematics and Computing Science, University of Groningen, P.O. Box 800, 9700 AV GroningenThe Netherlands
  2. 2.Computer Science Department, The University of Auckland, Private Bag 92019, Auckland 1142New Zealand
  3. 3.Faculty of Economics, University of Groningen, P.O. Box 800, 9700 AV GroningenThe Netherlands
  4. 4.School of Public Finance, Jiangxi University of Finance and Economy, Nanchang, 330013China

Personalised recommendations