Mixed-Framework Microporous Natural Zirconosilicates

  • Natalia V. Zubkova
  • Dmitrii Yu. Pushcharovsky


Among the rare elements in the Earth Crust, Zr is the most abundant one. Zr-minerals mainly occur in alkaline rocks, except zircon ZrSiO4 which was described in various types of rocks. Zirconium silicates revealed widely in nature and their formation is mainly connected with hydrothermal conditions (200–500°C). The most recent statistics of the IMA Commission of New Minerals, Nomenclature and Classification (CNMNC) shows that among Zr containing minerals Zr silicates form the largest class (73 from the total number of 94 mineral species). The crystal structures of Zr-silicates and Ti-silicates in the beginning of 70th contributed the theory of mixed frameworks formed by TO4 tetrahedra (T=P,Si) and MO6 octahedra (M=Zr,Ti). Zirconosilicates which mixed frameworks are characterized by general formula [ZrmSinO3m+2n]−2m form the largest group within the family of Zr-silicates (53 min. sp.). Most of these compounds exhibit technologically important alkali-ion mobility and ion exchange properties. The mixed frameworks in the structures of these compounds are characterized by the formation of the almost equivalent bonds Si-O-Si or Si-O-Zr, which determine the stability of such polyhedral configurations. ZrO6-octahedra in the structures of zirconosilicates with mixed frameworks do not show the tendency to condensation (unlike TiO6- and NbO6-octahedra in the structures of titano- and niobosilicates) (Pyatenko et al., 1999). That’s why there are no natural zirconosilicates with the ratio Si:Zr<1. The lowest Si:Zr ratio occurs in keldyshite, parakeldyshite and khibinskite (Si:Zr = 2) and some other related zirconosilicates in which structures isolated ZrO6-octahedra are connected with Si2O7 pyrogroups (Pekov and Chukanov, 2005).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blinov VA, Shumyatskaya NG, Voronkov AA, Ilyukhin VV, Belov NV (1977) Refinement of the crystal structure of wadeite K2Zr(Si3O9) and its relationship to kindred structural types. Sov Phys Crystallogr 22:31–35Google Scholar
  2. Boggs RC (1988) Calciohilairite: CaZrSi3O9·3H2O, the calcium analogue of hilairite from the golden horn batholith, northern Cascades, Washington. Am Mineral 73:1191–1194Google Scholar
  3. Brunowsky B (1936) Die Struktur des Katapleits (Na2ZrSi3O9·2H2O). Acta phys chim URSS 5:863–892Google Scholar
  4. Burke EAJ, Ferraris G (2004) New minerals approved in 2003 and nomenclature modifications approved in 2003 by the commission on new minerals and mineral names, international mineralogical association. Can Mineral 42:905–913CrossRefGoogle Scholar
  5. Cannillo E, Rossi G, Ungaretti L (1973) The crystal structure of elpidite. Am Mineral 58:106–109Google Scholar
  6. Chakoumakos BC, Hill RJ, Gibbs GV (1981) A molecular orbital study of rings in silicates and siloxanes. Am Mineral 66:1237–1249Google Scholar
  7. Chao GY (1985) The crystal structure of gaidonnayite Na2ZrSi3O9(H2O)2. Can Mineral 23:11–15Google Scholar
  8. Chao GY, Rowland JR, Chen TT (1973) The crystal structure of catapleiite. Abstracts with Programs — Geol Soc Am 5(7):572Google Scholar
  9. Chukanov NV, Pekov IV (2004) Heterosilicates with tetrahedral-octahedral frameworks: mineralogical and crystal-chemical aspects. Pre-prints of the international symposium “Micro-and mesoporous mineral phases” 9–13Google Scholar
  10. Dunn PJ, Newbury D (1983) Loudounite, a new zirconium silicate from Virginia. Can Mineral 21:37–40Google Scholar
  11. Fleet SG (1965) The crystal structure of dalyite. Zeitschrift fuer Kristallographie 121:349–368CrossRefGoogle Scholar
  12. Gerasimovsky VI (1962) Keldyshite, a new mineral. Dokl Akad Nauk USSR Earth Sci 142:123–125Google Scholar
  13. Ghose S, Thakur P (1985) The crystal structure of georgechaoite NaKZrSi3O9·2H2O. Can Mineral 23:5–10Google Scholar
  14. Ghose S, Wan C, Chao GY (1980) Petarasite, Na5Zr2Si6O18(Cl,OH).2H2O, a zeolite-type zirconosilicate. Can Mineral 18:503–509Google Scholar
  15. Gobechiya ER, Pekov IV, Pushcharovsky DYu, Ferraris G, Gula A, Zubkova NV, Chukanov NV (2003) New data on vlasovite: refinement of the crystal structure and the radiation damage of the crystal during the X-ray diffraction experiment. Crystallogr Rep 48:750–754CrossRefGoogle Scholar
  16. Hawthorne FC (1987) The crystal chemistry of the benitoite group minerals and structural relations in (Si3O9) ring structures. Neues Jb Miner Monat 16–30Google Scholar
  17. Horvath L, Pfenninger-Horvath E, Gault RA, Tarasoff P (1998) Mineralogy of the Saint-Amable Sill, Varennes and Saint-Amable, Quebec. Mineral Rec 29:83–118Google Scholar
  18. Ilyushin GD (1993) New data on crystal structure of umbite K2ZrSi3O9·H2O. Inorg Mater 27:1128–1133Google Scholar
  19. Ilyushin GD, Khomyakov AP, Shumyatskaya NG, Voronkov AA, Nevsky NN, Ilyukhin VV, Belov NV (1981a) Crystal structure of a new natural zirconium silicate K4Zr2Si6O18·2H2O. Sov Phys Dokl 26:118–120Google Scholar
  20. Ilyushin GD, Voronkov AA, Ilyukhin VV, Nevsky NN, Belov NV (1981b) Crystal structure of natural monoclinic catapleiite Na2ZrSi3O9·2H2O. Sov Phys Dokl 26:808–810Google Scholar
  21. Ilyushin GD, Voronkov AA, Nevskii NN, Ilyukhin VV, Belov NV (1981c) Crystal structure of hilairite Na2ZrSi3O9 (H2O)3. Sov Phys Dokl 26:916–917Google Scholar
  22. Johnsen O, Ferraris G, Gault RA, Grice JD, Kampf AR, Pekov IV (2003) The nomenclature of eudialyte-group minerals. Can Mineral 41:785–794CrossRefGoogle Scholar
  23. Johnsen O, Grice JD (1999) The crystal chemistry of the eudialyte group. CanMineral 37:865–891Google Scholar
  24. Kabalov YuK, Zubkova NV, Pushcharovsky DYu, Schneider J, Sapozhnikov AN (2000) Powder Rietveld refinement of armstrongite, CaZr[Si6O15]x3H2O. Z Kristallogr 215:757–761CrossRefGoogle Scholar
  25. Kashaev AA, Sapozhnikov AN (1978) Crystal structure of armstrongite. Sov Phys Crystallogr 23:539–542Google Scholar
  26. Khalilov AD, Khomyakov AP, Makhmudov SA (1978) Crystal structure of keldishite NaZr(Si2O6OH). Sov Phys Dokl 23:8–10Google Scholar
  27. Khomyakov AP (1977) Parakeldyshite, a new mineral. Dokl Akad Nauk SSSR 237:703–705 (in Russian)Google Scholar
  28. Khomyakov AP, Voronkov AA, Kobyashev YuS, Polezhaeva LI (1983) Umbite and paraumbite, new potassium zirconosilicates from the Khibiny alkalic massif. Zapiski VMO 112:461–469 (in Russian)Google Scholar
  29. Khomyakov AP, Voronkov AA, Lebedeva SI, Bykov VN, Yurkina KV (1974) Khibinskite, a new mineral. Zapiski VMO 103:110–116 (in Russian)Google Scholar
  30. Le Page Y, Perrault G (1976) Structure cristalline de la lemoynite, (Na,K)2CaZr2Si10O26·5-6H2O. Can Mineral 14:132–138Google Scholar
  31. Liu Yu, Du H, Xu Y, Ding H, Pang W, Yue Y (1999) Synthesis and characterization of a novel microporous titanisilicate with a structure of penkvilksite-1M’. Micropor Mesopor Mat 28:511–517CrossRefGoogle Scholar
  32. McDonald AM, Chao GY (2001) Natrolemoynite, a new hydrated sodiium zirconosilicate from Mont Saint-Hilaire, Quebec: Description and structure determination. Can Mineral 39:1295–1306CrossRefGoogle Scholar
  33. McDonald AM, Chao GY (2005) Bobtraillite, (Na,Ca)13Sr11(Zr,Y,Nb)14Si42B6O132(OH)12·12H2O, a new mineral species from Mont Saint-Hilaire, Quebec: description, structure determination and relationship to benitoite and wadeite. Can Mineral 43:747–758CrossRefGoogle Scholar
  34. Merlino S, Pasero M, Artioli G, Khomyakov AP (1994) Penkvilksite, a new kind of silicate structure: OD character, X-ray single-crystal (1M), and powder Rietveld (2O) refinements of two MDO polytypes. Am Mineral 79:1185–1193Google Scholar
  35. Merlino S, Pasero M, Bellezza M, Pushcharovsky DYu, Gobechia ER, Zubkova NV, Pekov IV (2004) Crystal structure of calcium catapleite. Can Mineral 42:1037–1045CrossRefGoogle Scholar
  36. Pekov IV (2000) Lovozero Massif: History, Pegmatites, Minerals, Moscow, OPGoogle Scholar
  37. Pekov IV, Chukanov NV (2005) Microporous framework silicate minerals with rare and transition elements: minerogenetic aspects. In: Mineralogy and Geochemistry, vol 57. Rev Mineral Geochem, pp 145–171CrossRefGoogle Scholar
  38. Pekov IV, Turchkova AG, Chukanov NV (2005) A study of caiton-exchange properties of natural sodium zirconosilicates. I. Experiments in aqueous solutions under room conditions. Abstr V International Symposium “Mineralogical museums”, pp 291–292Google Scholar
  39. Pekov IV, Zubkova NV, Pushcharovsky DYu, Kolitsch U, Tillmanns E (2007) Refined crystal structure of parakeldyshite and genetic crystal chemistry of zirconium minerals with [Si2O7] diorthogroups. Crystallogr Rep 52:1066–1071CrossRefGoogle Scholar
  40. Portnov AM (1964) Calcium catapleiite, a new catapleiite variety. Dokl Acad Nauk USSR Earth Sci 154:98–100Google Scholar
  41. Pudovkina ZV, Chernitsova NM (1991) Crystal structure of terskite Na4Zr[H4Si6O18]. Sov Phys Dokl 36:201–203Google Scholar
  42. Pudovkina ZV, Chernitsova NM, Voronkov AA, Pyatenko YuA (1980) Crystal structure of zirsinalite Na6CaZr(Si6O18). Sov Phys Dokl 25:69–70Google Scholar
  43. Pushcharovskii DYu, Pekov IV, Pasero M, Gobechiya ER, Merlino S, Zubkova NV (2002) Crystal structure of cation-deficient calciohilairite and possible mechanisms of decationization in mixed-framework minerals. Crystallogr Rep 47:748–752CrossRefGoogle Scholar
  44. Pyatenko YuA, Kurova TA, Chernitsova NM, Pudovkina ZV, Blinov VA, Maximova NV (1999) Niobium, tantalum and zirconium in minerals. Crystal chemistry guide, Moscow, IMGRE (in Russian)Google Scholar
  45. Rastsvetaeva RK, Khomyakov AP (1992) Crystal structure of a rare earth analog of hilairite. Sov Phys Crystallogr 37:845–847Google Scholar
  46. Sizova RG, Voronkov AA, Khomyakov AP (1974) Refinement of crystal structure of triclinic modification of Na2ZrSi2O7. Structura i Svoistva Kristallov Vladimir 2:30–42 (in Russian)Google Scholar
  47. Sokolova EV, Arakcheeva AV, Voloshin AV (1991) Crystal structure of komkovite. Sov Phys Dokl 36:666–668Google Scholar
  48. Subbotin VV, Merlino S, Pushcharovsky DYu, Pakhomovsky YaA, Ferro O, Bogdanova AN, Voloshin AV, Sorokhtina NV, Zubkova NV (2000) Tumchaite Na2(Zr,Sn)Si4O11x2H2O — a new mineral from carbonatites of the Vuoriyarvi alkali-ultrabasic massif, Murmansk Region, Russia. Am Mineral 85:1516–1520Google Scholar
  49. Tikhonenkova RP, Kazakova ME (1961) Vlasovite, a new zirconium silicate from the Lovozero massif’. Dokl Acad Nauk USSR Earth Sci 137:451–452Google Scholar
  50. Uvarova YuA, Sokolova E, Hawthorne FC, Pautov LA, Agakhanov AA (2004) A novel [Si8O45]18− sheet in the crystal structure of zeravshanite, Cs4Na2Zr3[Si18O45](H2O)2. Can Mineral 42:125–134CrossRefGoogle Scholar
  51. Voronkov AA, Pyatenko YuA (1961) Crystal structure of vlasovite. Sov Phys Crystallogr 6:755–760Google Scholar
  52. Voronkov AA, Shumyatskaya NG, Pyatenko YuA (1970) Crystal structure of a new natural modification of Na2Zr(Si2O7). Zh Strukt Khim 11:932–933 (in Russian)Google Scholar
  53. Voronkov AA, Zhdanova TA, Pyatenko YuA (1974) Refinement of the structure of vlasovite Na2ZrSi4O11 and some characteristics of the composition and structure of the zirconosilicates. Sov Phys Crystallogr 19:152–156Google Scholar
  54. Yamnova NA, Egorov-Tismenko YuK, Pekov IV (2001) Refined Crystal Structure of Lovozerite Na2CaZr[Si6O12(OH,O)6]·H2O. Crystallogr Rep 46:937–941CrossRefGoogle Scholar
  55. Yamnova NA, Egorov-Tismenko YuK, Pekov IV, Ekimenkova IA (2001) Crystal structure of litvinskite — a new natural member of the lovozerite group. Crystallogr Rep 46:190–193CrossRefGoogle Scholar
  56. Yamnova NA, Egorov-Tismenko YuK, Pekov IV, Shchegol’kova LV (2004) The crystal structure of kapustinite Na5.5Mn0.25Zr(Si6O16(OH)2): a new mineral of the lovozerite group. Dokl Earth Sci 397:658–662Google Scholar
  57. Zubkova NV, Pekov IV, Turchkova AG, Pushcharovskii DYu, Merlino S, Pasero M, Chukanov NV (2007) Crystal structures of potassium-exchanged forms of Catapleiite and Hilairite. Crystallogr Rep 52:65–70CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Natalia V. Zubkova
    • 1
  • Dmitrii Yu. Pushcharovsky
    • 1
  1. 1.Geology DepartmentMoscow State UniversityMoscowRussia

Personalised recommendations