Advertisement

The Space Complexity of k-Tree Isomorphism

  • V. Arvind
  • Bireswar Das
  • Johannes Köbler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4835)

Abstract

We show that isomorphism testing of k-trees is in the class StUSPACE(logn) (strongly unambiguous logspace). This bound follows from a deterministic logspace algorithm that accesses a strongly unambiguous logspace oracle for canonizing k-trees. Further we give a logspace canonization algorithm for k-paths.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AL89]
    Allender, E., Lange, K.-J.: RUSPACE(log n) is contained in DSPACE(log2 n/loglog n). Theory of Computing Systems 31, 539–550 (1989)CrossRefMathSciNetGoogle Scholar
  2. [All04]
    Allender, E.: Arithmetic circuits and counting complexity classes. In: Krajíček, J. (ed.) Complexity of Computations and Proofs, Seconda Universita di Napoli. Quaderni di Matematica, vol. 13, pp. 33–72 (2004)Google Scholar
  3. [AO96]
    Allender, E., Ogihara, M.: Relationships among PL, #L and the determinant. R.A.I.R.O. Informatique Théorique et Applications 30(1), 1–21 (1996)zbMATHMathSciNetGoogle Scholar
  4. [AP89]
    Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Applied Mathematics 23(2), 11–24 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  5. [Bab86]
    Babai, L.: A Las Vegas-NC algorithm for isomorphism of graphs with bounded multiplicity of eigenvalues. In: Proc. 27th IEEE Symposium on the Foundations of Computer Science, pp. 303–312. IEEE Computer Society Press, Los Alamitos (1986)Google Scholar
  6. [BJLR91]
    Buntrock, G., Jenner, B., Lange, K.-J., Rossmanith, P.: Unambiguity and fewness for logarithmic space. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529, pp. 168–179. Springer, Heidelberg (1991)Google Scholar
  7. [BL83]
    Babai, L., Luks, E.: Canonical labeling of graphs. In: Proc. 15th ACM Symposium on Theory of Computing, pp. 171–183 (1983)Google Scholar
  8. [Bod88]
    Bodlaender, H.: Dynamic programming on graphs with bounded treewidth. In: Lepistö, T., Salomaa, A. (eds.) Automata, Languages and Programming. LNCS, vol. 317, pp. 105–118. Springer, Heidelberg (1988)Google Scholar
  9. [Bod90]
    Bodlaender, H.: Polynomial algorithm for graph isomorphism and chromatic index on partial k-trees. Journal of Algorithms 11(4), 631–643 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [Bus97]
    Buss, S.: Alogtime algorithms for tree isomorphism, comparison, and canonization. In: Gottlob, G., Leitsch, A., Mundici, D. (eds.) KGC 1997. LNCS, vol. 1289, pp. 18–33. Springer, Heidelberg (1997)Google Scholar
  11. [Cha90]
    Chandrasekharan, N.: Isomorphism testing of k-trees is in NC. Information Processing Letters 34(6), 283–287 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  12. [CI88]
    Chandrasekharan, N., Iyengar, S.S.: NC algorithms for recognizing chordal graphs and k trees. IEEE Transactions on Computers 37(10), 1178–1183 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  13. [Die97]
    Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  14. [GNPR05]
    Gupta, A., Nishimura, N., Proskurowski, A., Ragde, P.: Embeddings of k-connected graphs of pathwidth k. Discrete Applied Mathematics 145(2), 242–265 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  15. [GSS02]
    Del Greco, J.G., Sekharan, C.N., Sridhar, R.: Fast parallel reordering and isomorphism testing of k-trees. Algorithmica 32(1), 61–72 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  16. [Gur97]
    Gurevich, Y.: From invariants to canonization. Bulletin of the European Association of Theoretical Computer Science (BEATCS) 63, 115–119 (1997)zbMATHMathSciNetGoogle Scholar
  17. [GV06]
    Grohe, M., Verbitsky, O.: Testing graph isomorphism in parallel by playing a game. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 3–14. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. [JKMT03]
    Jenner, B., Köbler, J., McKenzie, P., Torán, J.: Completeness results for graph isomorphism. Journal of Computer and System Sciences 66, 549–566 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  19. [KCP82]
    Klawe, M.M., Corneil, D.G., Proskurowski, A.: Isomorphism testing in hookup classes. SIAM Journal of Algebraic Discrete Methods 3(2), 260–274 (1982)zbMATHMathSciNetGoogle Scholar
  20. [Klo94]
    Kloks, T. (ed.): Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)zbMATHGoogle Scholar
  21. [Lin92]
    Lindell, S.: A logspace algorithm for tree canonization. In: Proc. 24th ACM Symposium on Theory of Computing, pp. 400–404. ACM Press, New York (1992)Google Scholar
  22. [Luk82]
    Luks, E.: Isomorphism of bounded valence can be tested in polynomial time. Journal of Computer and System Sciences 25, 42–65 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  23. [Mil83]
    Miller, G.L.: Isomorphism of k-contractible graphs. Information and Computation 56(1/2), 1–20 (1983)zbMATHGoogle Scholar
  24. [Pro89]
    Proskurowski, A.: Maximal graphs of path-width k or searching a partial k-caterpillar. Technical Report UO-CIS-TR-89-17, University of Oregon (1989)Google Scholar
  25. [Spi96]
    Spielman, D.A.: Faster isomorphism testing of strongly regular graphs. In: Proc. 28th ACM Symposium on Theory of Computing, pp. 576–584. ACM Press, New York (1996)Google Scholar
  26. [SS87]
    Scheffler, P., Seese, D.: A combinatorial and logical approach to linear-time computability. In: Davenport, J.H. (ed.) ISSAC 1987 and EUROCAL 1987. LNCS, vol. 378, pp. 379–380. Springer, Heidelberg (1989)Google Scholar
  27. [Wan94]
    Wanke, E.: Bounded tree-width and LOGCFL. Journal of Algorithms 16(3), 470–491 (1994)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • V. Arvind
    • 1
  • Bireswar Das
    • 1
  • Johannes Köbler
    • 2
  1. 1.The Institute of Mathematical Sciences, Chennai 600 113India
  2. 2.Institut für Informatik, Humboldt Universität zu BerlinGermany

Personalised recommendations