Finding Popular Places

  • Marc Benkert
  • Bojan Djordjevic
  • Joachim Gudmundsson
  • Thomas Wolle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4835)


Widespread availability of location aware devices (such as GPS receivers) promotes capture of detailed movement trajectories of people, animals, vehicles and other moving objects, opening new options for a better understanding of the processes involved. We investigate spatio-temporal movement patterns in large tracking data sets. Specifically we study so-called ‘popular places’, that is, regions that are visited by many entities. We present upper and lower bounds.


Query Range Boundary Edge Event Point Sweep Line Start Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wildlife tracking projects with GPS GSM collars (2006),
  2. 2.
    Al-Naymat, G., Chawla, S., Gudmundsson, J.: Dimensionality reduction for long duration and complex spatio-temporal queries. In: Proceedings of the 22nd ACM Symposium on Applied Computing, pp. 393–397. ACM, New York (2007)Google Scholar
  3. 3.
    Andersson, M., Gudmundsson, J., Laube, P., Wolle, T.: Reporting leadership patterns among trajectories. In: Proceedings of the 22nd ACM Symposium on Applied Computing, pp. 3–7. ACM, New York (2007)Google Scholar
  4. 4.
    Benkert, M., Gudmundsson, J., Hübner, F., Wolle, T.: Reporting flock patterns. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 660–671. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Cao, H., Wolfson, O., Trajcevski, G.: Spatio-temporal data reduction with deterministic error bounds. The VLDB Journal 15(3), 211–228 (2006)CrossRefGoogle Scholar
  6. 6.
    Edelsbrunner, H., Guibas, L.J.: Topologically sweeping an arrangement. Journal of Computer and System Sciences 38, 165–194 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Frank, A.U.: Socio-Economic Units: Their Life and Motion. In: Frank, A.U., Raper, J., Cheylan, J.P. (eds.) Life and motion of socio-economic units. GISDATA, vol. 8, pp. 21–34. Taylor & Francis, London (2001)Google Scholar
  8. 8.
    Gudmundsson, J., Katajainen, J., Merrick, D., Ong, C., Wolle, T.: Compressing spatio-temporal trajectories. In: ISAAC (to appear, 2007)Google Scholar
  9. 9.
    Gudmundsson, J., van Kreveld, M.: Computing longest duration flocks in trajectory data. In: Proceedings of the 14th ACM Symposium on Advances in GIS, pp. 35–42 (2006)Google Scholar
  10. 10.
    Gudmundsson, J., van Kreveld, M., Speckmann, B.: Efficient detection of motion patterns in spatio-temporal sets. GeoInformatica 11(2), 195–215 (2007)CrossRefGoogle Scholar
  11. 11.
    Güting, R.H., Schneider, M.: Moving Objects Databases. Morgan Kaufmann, San Francisco (2005)Google Scholar
  12. 12.
    Hadjieleftheriou, M., Kollios, G., Tsotras, V.J., Gunopulos, D.: Indexing spatio-temporal archives. The VLDB Journal 15(2), 143–164 (2006)CrossRefGoogle Scholar
  13. 13.
    Laube, P., Imfeld, S., Weibel, R.: Discovering relative motion patterns in groups of moving point objects. International Journal of Geographical Information Science 19(6), 639–668 (2005)CrossRefGoogle Scholar
  14. 14.
    Laube, P., van Kreveld, M., Imfeld, S.: Finding REMO – detecting relative motion patterns in geospatial lifelines. In: Fisher, P.F. (ed.) Developments in Spatial Data Handling: Proceedings of the 11th International Symposium on Spatial Data Handling, pp. 201–214. Springer, Berlin (2004)Google Scholar
  15. 15.
    Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.: Mining, indexing, and querying historical spatiotemporal data. In: Proceedings of the 10th ACM SIGKDD International Conference On Knowledge Discovery and Data Mining, pp. 236–245. ACM Press, New York (2004)CrossRefGoogle Scholar
  16. 16.
    Sǎltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions of continuously moving objects. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 331–342 (2000)Google Scholar
  17. 17.
    Verhein, F., Chawla, S.: Mining spatio-temporal association rules, sources, sinks, stationary regions and thoroughfares in object mobility databases. In: Lee, M.L., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 187–201. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Marc Benkert
    • 1
  • Bojan Djordjevic
    • 2
  • Joachim Gudmundsson
    • 2
  • Thomas Wolle
    • 2
  1. 1.Department of Computer Science, Karlsruhe UniversityGermany
  2. 2.NICTA SydneyAustralia

Personalised recommendations