Kinetic Maintenance of Mobile k-Centres on Trees
Abstract
Let C denote a set of n mobile clients, each of which follows a continuous trajectory on a weighted tree T. We establish tight bounds on the maximum relative velocity of the 1-centre and 2-centre of C. When each client in C moves with linear motion along a path on T we derive a tight bound of Θ(n) on the complexity of the motion of the 1-centre and corresponding bounds of O(n 2 α(n)) and Ω(n 2) for a 2-centre, where α(n) denotes the inverse Ackermann function. We describe efficient algorithms for calculating the trajectories of the 1-centre and 2-centre of C: the 1-centre can be found in optimal time O(n logn) when the distance function between mobile clients is known or O(n 2) when the function must be calculated, and a 2-centre can be found in time O(n 2 logn). These algorithms lend themselves to implementation within the framework of kinetic data structures, resulting in structures that are compact, efficient, responsive, and local.
Keywords
Convex Hull Linear Motion Graph Distance Mobile Client Weighted TreePreview
Unable to display preview. Download preview PDF.
References
- 1.Agarwal, P.K., Guibas, L.J., Hershberger, J., Veach, E.: Maintaining the extent of a moving point set. Disc. & Comp. Geom. 26, 353–374 (2001)zbMATHMathSciNetGoogle Scholar
- 2.Agarwal, P.K., Har-Peled, S.: Maintaining approximate extent measures of moving points. In: SODA, pp. 148–157 (2001)Google Scholar
- 3.Basch, J.: Kinetic Data Structures. PhD thesis, Stanford U. (1999)Google Scholar
- 4.Basch, J., Guibas, L., Hershberger, J.: Data structures for mobile data. J. Alg. 31, 1–28 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
- 5.Basch, J., Guibas, L.J., Silverstein, C., Zhang, L.: A practical evaluation of kinetic data structures. In: SOCG, pp. 388–390 (1997)Google Scholar
- 6.Bespamyatnikh, S., Bhattacharya, B., Kirkpatrick, D., Segal, M.: Mobile facility location. In: Int. ACM Work. on Disc. Alg. & Meth. for Mob. Comp. & Comm, pp. 46–53 (2000)Google Scholar
- 7.Bruno, G., Ghiani, G., Improta, G.: Dynamic positioning of idle automated guided vehicles. J. Int. Man. 11, 209–215 (2000)CrossRefGoogle Scholar
- 8.Dearing, P.M., Francis, R.L.: A minimax location problem on a network. Trans. Sci. 8, 333–343 (1974)MathSciNetGoogle Scholar
- 9.Durocher, S.: Geometric Facility Location under Continuous Motion. PhD thesis, U. of British Columbia (2006)Google Scholar
- 10.Durocher, S., Kirkpatrick, D.: The Steiner centre: Stability, eccentricity, and applications to mobile facility location. Int. J. Comp. Geom. & App. 16, 345–371 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
- 11.Durocher, S., Kirkpatrick, D.: Bounded-velocity approximations of mobile Euclidean 2-centres. Int. J. Comp. Geom. & App. (to appear, 2007)Google Scholar
- 12.Dvir, D., Handler, G.Y.: The absolute center of a network. Networks 43, 109–118 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
- 13.Frederickson, G.N.: Parametric search and locating supply centers in trees. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1991. LNCS, vol. 519, pp. 299–319. Springer, Heidelberg (1991)CrossRefGoogle Scholar
- 14.Gao, J., Guibas, L.J., Hershberger, J., Zhang, L., Zhu, A.: Discrete mobile centers. Disc. & Comp. Geom. 30, 45–65 (2003)zbMATHMathSciNetGoogle Scholar
- 15.Gao, J., Guibas, L.J., Nguyen, A.: Deformable spanners and applications. Comp. Geom.: Th. & App. 35, 2–19 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
- 16.Guibas, L.J.: Kinetic data structures: a state of the art report. In: Work. Alg. Found. Rob, pp. 191–209. A. K. Peters, Ltd (1998)Google Scholar
- 17.Halpern, J., Maimon, O.: Algorithms for the m-center problems: A survey. Eur. J. Oper. Res. 10, 90–99 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
- 18.Handler, G.Y.: Minimax location of a facility in an undirected tree graph. Trans. Sci. 7, 287–293 (1973)MathSciNetGoogle Scholar
- 19.Handler, G.Y.: Finding two-centers of a tree: The continuous case. Trans. Sci. 12, 93–106 (1978)MathSciNetCrossRefGoogle Scholar
- 20.Hansen, P., Labbé, M., Peeters, D., Thisse, J.F.: Single facility location on networks. An. Disc. Math. 31, 113–146 (1987)Google Scholar
- 21.Hershberger, J.: Finding the upper envelope of n line segments in O(n logn) time. Inf. Proc. Let. 33, 169–174 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
- 22.Hershberger, J.: Smooth kinetic maintenance of clusters. Comp. Geom.: Th. & App. 31, 3–30 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
- 23.Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems. I: The p-centers. SIAM J. App. Math. 37, 513–538 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
- 24.Tansel, B.C., Francis, R.L., Lowe, T.J.: Location on networks: A survey. part I: The p-center and p-median problems. Man. Sci. 29, 482–497 (1983)zbMATHMathSciNetGoogle Scholar
- 25.Tansel, B.C., Francis, R.L., Lowe, T.J.: Location on networks: A survey. part II: Exploiting tree network structure. Man. Sci. 29, 498–511 (1983)zbMATHMathSciNetGoogle Scholar