Computing Upward Topological Book Embeddings of Upward Planar Digraphs

  • F. Giordano
  • G. Liotta
  • T. Mchedlidze
  • A. Symvonis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4835)


This paper studies the problem of computing an upward topological book embedding of an upward planar digraph G, i.e. a topological book embedding of G where all edges are monotonically increasing in the upward direction. Besides having its own inherent interest in the theory of upward book embeddability, the question has applications to well studied research topics of computational geometry and of graph drawing. The main results of the paper are as follows.

  • Every upward planar digraph G with n vertices admits an upward topological book embedding such that every edge of G crosses the spine of the book at most once.

  • Every upward planar digraph G with n vertices admits a point-set embedding on any set of n distinct points in the plane such that the drawing is upward and every edge of G has at most two bends.

  • Every pair of upward planar digraphs sharing the same set of n vertices admits an upward simultaneous embedding with at most two bends per edge.


Planar Graph Computational Geometry Upward Direction Outerplanar Graph External Face 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alzohairi, M., Rival, I.: Series-parallel ordered sets have pagenumber two. In: North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 11–24. Springer, Heidelberg (1997)Google Scholar
  2. 2.
    Battista, G.D., Eades, P., Tamassia, R., Tollis, I.: Graph Drawing. Prentice-Hall, Englewood Cliffs (1999)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bose, P.: On embedding an outer-planar graph in a point set. Comput. Geom. 23(3), 303–312 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bose, P., McAllister, M., Snoeyink, J.: Optimal algorithms to embed trees in a point set. Journal of Graph Algorithms and Applications 2(1), 1–15 (1997)MathSciNetGoogle Scholar
  5. 5.
    Brass, P., Cenek, E., Duncan, C., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S., Lubiw, A., Mitchell, J.: On simultaneous planar graph embeddings. Computational Geometry. Theory and Applications 36(2), 117–130 (2007)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Cappos, J., Estrella-Balderrama, A., Fowler, J., Kobourov, S.G.: Simultaneous graph embedding with bends and circular arcs. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 95–107. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theor. Comput. Sci. 61(2-3), 175–198 (1988)CrossRefGoogle Scholar
  8. 8.
    Di Battista, G., Tamassia, R., Tollis, I.G.: Constrained visibility representations of graphs. Inf. Process. Lett. 41(1), 1–7 (1992)zbMATHCrossRefGoogle Scholar
  9. 9.
    Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.: Book embeddability of series-parallel digraphs. Algorithmica 45(4), 531–547 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.K.: Curve-constrained drawings of planar graphs. Comput. Geom. Theory Appl. 30(1), 1–23 (2005)zbMATHGoogle Scholar
  11. 11.
    Di Giacomo, E., Liotta, G.: Simultaneous embedding of outerplanar graphs, paths, and cycles. International Journal of Computational Geometry and Applications 17(2), 139–160 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Didimo, W.: Upward planar drawings and switch-regularity heuristics. Journal of Graph Algorithms and Applications 10(2), 259–285 (2006)MathSciNetGoogle Scholar
  13. 13.
    Enomoto, H., Miyauchi, M., Ota, K.: Lower bounds for the number of edge-crossings over the spine in a topological book embedding of a graph. Discrete Applied Mathematics 92, 149–155 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Erten, C., Kobourov, S.: Simultaneous embedding of planar graphs with few bends. Journal of Graph Algorithms and Applications 9(3), 347–364 (2005)MathSciNetGoogle Scholar
  15. 15.
    Giordano, F., Liotta, G., Mchedlidze, T., Symvonis, T.: Computing upward topological book embeddings of upward planar digraphs. Technical report, RT-007-02 (2007)Google Scholar
  16. 16.
    Frati, F.: Embedding graphs simultaneously with fixed edges. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 108–113. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Geyer, M., Kaufmann, M., Vrto, I.: Two trees which are self-intersecting when drawn simultaneously. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 201–210. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified points. Amer. Math. Monthly 98(2), 165–166 (1991)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of posets. SIAM Journal on Discrete Mathematics 10, 599–625 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of directed acyclic graphs: Part II. SIAM Journal on Computing 28, 1588–1626 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Heath, L.S., Pemmaraju, S.V., Trenk, A.: Stack and queue layouts of directed acyclic graphs: Part I. SIAM Journal on Computing 28, 1510–1539 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. Journal of Graph Algorithms and Applications 6(1), 115–129 (2002)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  24. 24.
    Kelly, D.: Fundamentals of planar ordered sets. Discrete Math. 63, 197–216 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Nishizeki, T., Rahman, M.S.: Planar Graph Drawing. Lecture Notes Series on Computing, vol. 12. World Scientific (2004)Google Scholar
  26. 26.
    Nowakowski, R., Parker, A.: Ordered sets, pagenumbers and planarity. Order 6, 209–218 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Sugiyama, K.: Graph Drawing and Application for Software amd Knowledge Engineers. World Scientific, Singapore (2001)Google Scholar
  28. 28.
    Yannakakis, M.: Embedding planar graphs in four pages. Journal of Computer and System Sciences 38, 36–67 (1989)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • F. Giordano
    • 1
  • G. Liotta
    • 1
  • T. Mchedlidze
    • 2
  • A. Symvonis
    • 2
  1. 1.Università degli Studi di PerugiaItaly
  2. 2.National Technical University of AthensGreece

Personalised recommendations