Dilation-Optimal Edge Deletion in Polygonal Cycles

  • Hee-Kap Ahn
  • Mohammad Farshi
  • Christian Knauer
  • Michiel Smid
  • Yajun Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4835)

Abstract

Let C be a polygonal cycle on n vertices in the plane. A randomized algorithm is presented which computes in O(n log3n) expected time, the edge of C whose removal results in a polygonal path of smallest possible dilation. It is also shown that the edge whose removal gives a polygonal path of largest possible dilation can be computed in O(n logn) time. If C is a convex polygon, the running time for the latter problem becomes O(n). Finally, it is shown that for each edge e of C, a (1 − ε)-approximation to the dilation of the path C ∖ {e} can be computed in O(n logn) total time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K., Klein, R., Knauer, C., Sharir, M.: Computing the detour of polygonal curves. Technical Report B 02-03, Fachbereich Mathematik und Informatik, Freie Universität Berlin (2002)Google Scholar
  2. 2.
    Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM 42, 67–90 (1995)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Clarkson, K.L., Shor, P.W.: Algorithms for diametral pairs and convex hulls that are optimal, randomized, and incremental. In: SCG 1988: Proceedings of the fourth annual symposium on Computational geometry, pp. 12–17. ACM Press, New York (1988)CrossRefGoogle Scholar
  4. 4.
    Fortune, S.J.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174 (1987)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fredman, M.L., Komlos, J., Szemeredi, E.: Storing a sparse table with O(1) worst case access time. Journal of the ACM 31, 538–544 (1984)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kirkpatrick, D.G.: Optimal search in planar subdivisions. SIAM Journal on Computing 12, 28–35 (1983)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Langerman, S., Morin, P., Soss, M.: Computing the maximum detour and spanning ratio of planar paths, trees and cycles. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 250–261. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Lee, D.T., Preparata, F.P.: The all nearest-neighbor problem for convex polygons. Information Processing Letters 7, 189–192 (1978)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lenhof, H.P., Smid, M.: Sequential and parallel algorithms for the k closest pairs problem. International Journal of Computational Geometry & Applications 5, 273–288 (1995)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Narasimhan, G., Smid, M.: Approximating the stretch factor of Euclidean graphs. SIAM Journal on Computing 30, 978–989 (2000)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007)MATHGoogle Scholar
  12. 12.
    Smid, M.: Closest-point problems in computational geometry. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 877–935. Elsevier Science, Amsterdam (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Hee-Kap Ahn
    • 1
  • Mohammad Farshi
    • 2
    • 4
  • Christian Knauer
    • 3
  • Michiel Smid
    • 4
  • Yajun Wang
    • 5
  1. 1.Department of Computer Science and Engineering, POSTECH, PohangKorea
  2. 2.Department of Mathematics and Computing Science, TU Eindhoven, P.O. Box 513, 5600 MB EindhovenThe Netherlands
  3. 3.Institut für Informatik, Freie Universität Berlin, Takustraße 9, D–14195 BerlinGermany
  4. 4.School of Computer Science, Carleton University, Ottawa, Ontario, K1S 5B6Canada
  5. 5.Department of Computer Science and Engineering, HKUST, Hong Kong S.A.RChina

Personalised recommendations